IDEAS home Printed from https://ideas.repec.org/r/eee/energy/v35y2010i12p5483-5496.html
   My bibliography  Save this item

A multi-objective decision model for the improvement of energy efficiency in buildings

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Ahlrichs, Jakob & Rockstuhl, Sebastian, 2022. "Estimating fair rent increases after building retrofits: A max-min fairness approach," Energy Policy, Elsevier, vol. 164(C).
  2. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
  3. Igor Tomièiæ & Markus Schatten, 2015. "Towards an Agent Based Framework for Modelling Smart Self-Sustainable Systems," Interdisciplinary Description of Complex Systems - scientific journal, Croatian Interdisciplinary Society Provider Homepage: http://indecs.eu, vol. 13(1), pages 57-70.
  4. Brown, Paul & Ly, Tuan & Pham, Hannah & Sivabalan, Prabhu, 2020. "Automation and management control in dynamic environments: Managing organisational flexibility and energy efficiency in service sectors," The British Accounting Review, Elsevier, vol. 52(2).
  5. Piechocki, Janusz & Ambroziak, Dominik & Palkowski, Aleksander & Redlarski, Grzegorz, 2014. "Use of Modified Cuckoo Search algorithm in the design process of integrated power systems for modern and energy self-sufficient farms," Applied Energy, Elsevier, vol. 114(C), pages 901-908.
  6. Bertone, Edoardo & Sahin, Oz & Stewart, Rodney A. & Zou, Patrick X.W. & Alam, Morshed & Hampson, Keith & Blair, Evan, 2018. "Role of financial mechanisms for accelerating the rate of water and energy efficiency retrofits in Australian public buildings: Hybrid Bayesian Network and System Dynamics modelling approach," Applied Energy, Elsevier, vol. 210(C), pages 409-419.
  7. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
  8. Christina Diakaki & Evangelos Grigoroudis, 2021. "Improving Energy Efficiency in Buildings Using an Interactive Mathematical Programming Approach," Sustainability, MDPI, vol. 13(8), pages 1-25, April.
  9. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
  10. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2017. "Artificial neural networks to predict energy performance and retrofit scenarios for any member of a building category: A novel approach," Energy, Elsevier, vol. 118(C), pages 999-1017.
  11. Karmellos, M. & Kiprakis, A. & Mavrotas, G., 2015. "A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies," Applied Energy, Elsevier, vol. 139(C), pages 131-150.
  12. Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
  13. Lombardi, P. & Sokolnikova, T. & Suslov, K. & Voropai, N. & Styczynski, Z.A., 2016. "Isolated power system in Russia: A chance for renewable energies?," Renewable Energy, Elsevier, vol. 90(C), pages 532-541.
  14. Zhixing Li & Mimi Tian & Xiaoqing Zhu & Shujing Xie & Xin He, 2022. "A Review of Integrated Design Process for Building Climate Responsiveness," Energies, MDPI, vol. 15(19), pages 1-35, September.
  15. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
  16. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
  17. Giulia Mancò & Elisa Guelpa & Alessandro Colangelo & Alessandro Virtuani & Tommaso Morbiato & Vittorio Verda, 2021. "Innovative Renewable Technology Integration for Nearly Zero-Energy Buildings within the Re-COGNITION Project," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
  18. Bottino-Leone, Dario & Larcher, Marco & Herrera-Avellanosa, Daniel & Haas, Franziska & Troi, Alexandra, 2019. "Evaluation of natural-based internal insulation systems in historic buildings through a holistic approach," Energy, Elsevier, vol. 181(C), pages 521-531.
  19. Seyedzadeh, Saleh & Pour Rahimian, Farzad & Oliver, Stephen & Rodriguez, Sergio & Glesk, Ivan, 2020. "Machine learning modelling for predicting non-domestic buildings energy performance: A model to support deep energy retrofit decision-making," Applied Energy, Elsevier, vol. 279(C).
  20. Walter, Travis & Sohn, Michael D., 2016. "A regression-based approach to estimating retrofit savings using the Building Performance Database," Applied Energy, Elsevier, vol. 179(C), pages 996-1005.
  21. Huanan Li & Quande Qin, 2017. "Optimal selection of different CCS technologies under CO2 reduction targets," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1197-1209, September.
  22. Ahlrichs, Jakob & Rockstuhl, Sebastian & Tränkler, Timm & Wenninger, Simon, 2020. "The impact of political instruments on building energy retrofits: A risk-integrated thermal Energy Hub approach," Energy Policy, Elsevier, vol. 147(C).
  23. Premrov, Miroslav & Žegarac Leskovar, Vesna & Mihalič, Klara, 2016. "Influence of the building shape on the energy performance of timber-glass buildings in different climatic conditions," Energy, Elsevier, vol. 108(C), pages 201-211.
  24. Yan, Chengchu & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2015. "A multi-level energy performance diagnosis method for energy information poor buildings," Energy, Elsevier, vol. 83(C), pages 189-203.
  25. Ferreira, Joaquim & Pinheiro, Manuel Duarte & Brito, Jorge de, 2013. "Refurbishment decision support tools review—Energy and life cycle as key aspects to sustainable refurbishment projects," Energy Policy, Elsevier, vol. 62(C), pages 1453-1460.
  26. Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
  27. Yujie Xu & Vivian Loftness & Edson Severnini, 2021. "Using Machine Learning to Predict Retrofit Effects for a Commercial Building Portfolio," Energies, MDPI, vol. 14(14), pages 1-24, July.
  28. Nikos Kampelis & Elisavet Tsekeri & Dionysia Kolokotsa & Kostas Kalaitzakis & Daniela Isidori & Cristina Cristalli, 2018. "Development of Demand Response Energy Management Optimization at Building and District Levels Using Genetic Algorithm and Artificial Neural Network Modelling Power Predictions," Energies, MDPI, vol. 11(11), pages 1-22, November.
  29. Premrov, Miroslav & Žigart, Maja & Žegarac Leskovar, Vesna, 2018. "Influence of the building shape on the energy performance of timber-glass buildings located in warm climatic regions," Energy, Elsevier, vol. 149(C), pages 496-504.
  30. Carlos Fernández Bandera & Ana Fei Muñoz Mardones & Hu Du & Juan Echevarría Trueba & Germán Ramos Ruiz, 2018. "Exergy As a Measure of Sustainable Retrofitting of Buildings," Energies, MDPI, vol. 11(11), pages 1-19, November.
  31. García Kerdan, Iván & Raslan, Rokia & Ruyssevelt, Paul & Morillón Gálvez, David, 2017. "A comparison of an energy/economic-based against an exergoeconomic-based multi-objective optimisation for low carbon building energy design," Energy, Elsevier, vol. 128(C), pages 244-263.
  32. Aste, Niccolò & Leonforte, Fabrizio & Manfren, Massimiliano & Mazzon, Manlio, 2015. "Thermal inertia and energy efficiency – Parametric simulation assessment on a calibrated case study," Applied Energy, Elsevier, vol. 145(C), pages 111-123.
  33. Alberto Giretti & Alessandra Corneli & Berardo Naticchia, 2021. "A Decision Support System for Scenario Analysis in Energy Refurbishment of Residential Buildings," Energies, MDPI, vol. 14(16), pages 1-21, August.
  34. Zhiqiang Shi & Qianni Liu & Zhongjun Zhang & Tianhao Yue, 2022. "Thermal Comfort in the Design Classroom for Architecture in the Cold Area of China," Sustainability, MDPI, vol. 14(14), pages 1-17, July.
  35. Panagiotis Kontogiorgos & Nikolaos Chrysanthopoulos & George P. Papavassilopoulos, 2018. "A Mixed-Integer Programming Model for Assessing Energy-Saving Investments in Domestic Buildings under Uncertainty," Energies, MDPI, vol. 11(4), pages 1-14, April.
  36. Ahlrichs, Jakob & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2022. "Impact of socio-economic factors on local energetic retrofitting needs - A data analytics approach," Energy Policy, Elsevier, vol. 160(C).
  37. Tharindu Prabatha & Kasun Hewage & Rehan Sadiq, 2023. "An Incentives Planning Framework for Residential Energy Retrofits: A Life Cycle Thinking-Based Analysis under Uncertainty," Sustainability, MDPI, vol. 15(6), pages 1-29, March.
  38. Henze, Gregor P. & Pavlak, Gregory S. & Florita, Anthony R. & Dodier, Robert H. & Hirsch, Adam I., 2015. "An energy signal tool for decision support in building energy systems," Applied Energy, Elsevier, vol. 138(C), pages 51-70.
  39. Edgar Lorenzo-Sáez & José-Vicente Oliver-Villanueva & Eloina Coll-Aliaga & Lenin-Guillermo Lemus-Zúñiga & Victoria Lerma-Arce & Antonio Reig-Fabado, 2020. "Energy Efficiency and GHG Emissions Mapping of Buildings for Decision-Making Processes against Climate Change at the Local Level," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
  40. Deng, Qianli & Jiang, Xianglin & Zhang, Limao & Cui, Qingbin, 2015. "Making optimal investment decisions for energy service companies under uncertainty: A case study," Energy, Elsevier, vol. 88(C), pages 234-243.
  41. Habib Ur Rehman & Sajjad Ali Haider & Syed Rameez Naqvi & Muhammad Naeem & Kyung-Sup Kwak & S. M. Riazul Islam, 2022. "Environment Friendly Energy Cooperation in Neighboring Buildings: A Transformed Linearization Approach," Energies, MDPI, vol. 15(3), pages 1-15, February.
  42. Nguyen, Anh-Tuan & Reiter, Sigrid & Rigo, Philippe, 2014. "A review on simulation-based optimization methods applied to building performance analysis," Applied Energy, Elsevier, vol. 113(C), pages 1043-1058.
  43. Alexander Melnik & Kirill Ermolaev, 2020. "Strategy Context of Decision Making for Improved Energy Efficiency in Industrial Energy Systems," Energies, MDPI, vol. 13(7), pages 1-28, March.
  44. Yaser Imad Alamin & María Del Mar Castilla & José Domingo Álvarez & Antonio Ruano, 2017. "An Economic Model-Based Predictive Control to Manage the Users’ Thermal Comfort in a Building," Energies, MDPI, vol. 10(3), pages 1-18, March.
  45. Diakaki, Christina & Grigoroudis, Evangelos & Kolokotsa, Dionyssia, 2013. "Performance study of a multi-objective mathematical programming modelling approach for energy decision-making in buildings," Energy, Elsevier, vol. 59(C), pages 534-542.
  46. Xu, Wenjie & Svetozarevic, Bratislav & Di Natale, Loris & Heer, Philipp & Jones, Colin N., 2024. "Data-driven adaptive building thermal controller tuning with constraints: A primal–dual contextual Bayesian optimization approach," Applied Energy, Elsevier, vol. 358(C).
  47. Małgorzata Basińska & Dobrosława Kaczorek & Halina Koczyk, 2021. "Economic and Energy Analysis of Building Retrofitting Using Internal Insulations," Energies, MDPI, vol. 14(9), pages 1-18, April.
  48. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2021. "Understanding the risk perception of energy efficiency investments: Investment perspective vs. energy bill perspective," Energy Policy, Elsevier, vol. 159(C).
  49. Yaw-Shyan Tsay & Chiu-Yu Yeh & Yu-Han Chen & Mei-Chen Lu & Yu-Chen Lin, 2021. "A Machine Learning-Based Prediction Model of LCCO 2 for Building Envelope Renovation in Taiwan," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
  50. Abejon Aparicio, Noe & Lai, Cynthia & Chan-Halbrendt, Catherine, 2012. "“DOSSA”, highway to energy self-sustainability," Applied Energy, Elsevier, vol. 97(C), pages 217-224.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.