IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v88y2015icp234-243.html
   My bibliography  Save this article

Making optimal investment decisions for energy service companies under uncertainty: A case study

Author

Listed:
  • Deng, Qianli
  • Jiang, Xianglin
  • Zhang, Limao
  • Cui, Qingbin

Abstract

Varied initial energy efficiency investments would result in different annual energy savings achievements. In order to balance the savings revenue and the potential capital loss through EPC (Energy Performance Contracting), a cost-effective investment decision is needed when selecting energy efficiency technologies. In this research, an approach is developed for the ESCO (Energy Service Company) to evaluate the potential energy savings profit, and thus make the optimal investment decisions. The energy savings revenue under uncertainties, which are derived from energy efficiency performance variation and energy price fluctuation, are first modeled as stochastic processes. Then, the derived energy savings profit is shared by the owner and the ESCO according to the contract specification. A simulation-based model is thus built to maximize the owner's profit, and at the same time, satisfy the ESCO's expected rate of return. In order to demonstrate the applicability of the proposed approach, the University of Maryland campus case is also presented. The proposed method could not only help the ESCO determine the optimal energy efficiency investments, but also assist the owner's decision in the bidding selection.

Suggested Citation

  • Deng, Qianli & Jiang, Xianglin & Zhang, Limao & Cui, Qingbin, 2015. "Making optimal investment decisions for energy service companies under uncertainty: A case study," Energy, Elsevier, vol. 88(C), pages 234-243.
  • Handle: RePEc:eee:energy:v:88:y:2015:i:c:p:234-243
    DOI: 10.1016/j.energy.2015.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544215005381
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2015.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Choi, Jun-Ki & Morrison, Drew & Hallinan, Kevin P. & Brecha, Robert J., 2014. "Economic and environmental impacts of community-based residential building energy efficiency investment," Energy, Elsevier, vol. 78(C), pages 877-886.
    2. Abadie, Luis M. & Ortiz, Ramon A. & Galarraga, I., 2012. "Determinants of energy efficiency investments in the US," Energy Policy, Elsevier, vol. 45(C), pages 551-566.
    3. Morrissey, J. & Meyrick, B. & Sivaraman, D. & Horne, R.E. & Berry, M., 2013. "Cost-benefit assessment of energy efficiency investments: Accounting for future resources, savings and risks in the Australian residential sector," Energy Policy, Elsevier, vol. 54(C), pages 148-159.
    4. Lin, Tyrone T. & Huang, Shio-Ling, 2010. "An entry and exit model on the energy-saving investment strategy with real options," Energy Policy, Elsevier, vol. 38(2), pages 794-802, February.
    5. Ansar, Jasmin & Sparks, Roger, 2009. "The experience curve, option value, and the energy paradox," Energy Policy, Elsevier, vol. 37(3), pages 1012-1020, March.
    6. Ginestet, S. & Marchio, D., 2010. "Retro and on-going commissioning tool applied to an existing building: Operability and results of IPMVP," Energy, Elsevier, vol. 35(4), pages 1717-1723.
    7. Catherine Fuss & Philip Vermeulen, 2008. "Firms' investment decisions in response to demand and price uncertainty," Applied Economics, Taylor & Francis Journals, vol. 40(18), pages 2337-2351.
    8. Galvin, Ray, 2015. "‘Constant’ rebound effects in domestic heating: Developing a cross-sectional method," Ecological Economics, Elsevier, vol. 110(C), pages 28-35.
    9. Wang, Dong, 2014. "A dynamic optimization on economic energy efficiency in development: A numerical case of China," Energy, Elsevier, vol. 66(C), pages 181-188.
    10. Stuart, Elizabeth & Larsen, Peter H. & Goldman, Charles A. & Gilligan, Donald, 2014. "A method to estimate the size and remaining market potential of the U.S. ESCO (energy service company) industry," Energy, Elsevier, vol. 77(C), pages 362-371.
    11. Brodrick, Philip G. & Kang, Charles A. & Brandt, Adam R. & Durlofsky, Louis J., 2015. "Optimization of carbon-capture-enabled coal-gas-solar power generation," Energy, Elsevier, vol. 79(C), pages 149-162.
    12. Lund, Henrik, 2007. "Renewable energy strategies for sustainable development," Energy, Elsevier, vol. 32(6), pages 912-919.
    13. Lü, Xiaoshu & Lu, Tao & Kibert, Charles J. & Viljanen, Martti, 2014. "A novel dynamic modeling approach for predicting building energy performance," Applied Energy, Elsevier, vol. 114(C), pages 91-103.
    14. S. Rosenkranz & K.S. Muehlfeld & G. van der Laan & G.U. Weitzel & J. van der Donk & H. Ivanova & E.J. van Kesteren & M. Ottink & H. van der Spek, 2013. "Sustainable Decision-Making: Non-Monetary Incentives for Pro-Social Behavior in the Energy Sector," Working Papers 13-16, Utrecht School of Economics.
    15. Nemet, Andreja & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2013. "Optimising entire lifetime economy of heat exchanger networks," Energy, Elsevier, vol. 57(C), pages 222-235.
    16. Mills, Evan & Kromer, Steve & Weiss, Gary & Mathew, Paul A., 2006. "From volatility to value: analysing and managing financial and performance risk in energy savings projects," Energy Policy, Elsevier, vol. 34(2), pages 188-199, January.
    17. Pousinho, H.M.I. & Mendes, V.M.F. & Catalão, J.P.S., 2011. "A risk-averse optimization model for trading wind energy in a market environment under uncertainty," Energy, Elsevier, vol. 36(8), pages 4935-4942.
    18. Ming, Zeng & Ximei, Liu & Yulong, Li & Lilin, Peng, 2014. "Review of renewable energy investment and financing in China: Status, mode, issues and countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 23-37.
    19. Larsen, Peter H. & Goldman, Charles A. & Satchwell, Andrew, 2012. "Evolution of the U.S. energy service company industry: Market size and project performance from 1990–2008," Energy Policy, Elsevier, vol. 50(C), pages 802-820.
    20. Diakaki, Christina & Grigoroudis, Evangelos & Kabelis, Nikos & Kolokotsa, Dionyssia & Kalaitzakis, Kostas & Stavrakakis, George, 2010. "A multi-objective decision model for the improvement of energy efficiency in buildings," Energy, Elsevier, vol. 35(12), pages 5483-5496.
    21. Deng, Qianli & Jiang, Xianglin & Cui, Qingbin & Zhang, Limao, 2015. "Strategic design of cost savings guarantee in energy performance contracting under uncertainty," Applied Energy, Elsevier, vol. 139(C), pages 68-80.
    22. Kjaerland, Frode, 2007. "A real option analysis of investments in hydropower--The case of Norway," Energy Policy, Elsevier, vol. 35(11), pages 5901-5908, November.
    23. Cortazar, Gonzalo & Schwartz, Eduardo S., 2003. "Implementing a stochastic model for oil futures prices," Energy Economics, Elsevier, vol. 25(3), pages 215-238, May.
    24. Baringo, L. & Conejo, A.J., 2013. "Correlated wind-power production and electric load scenarios for investment decisions," Applied Energy, Elsevier, vol. 101(C), pages 475-482.
    25. Pelenur, Marcos J. & Cruickshank, Heather J., 2012. "Closing the Energy Efficiency Gap: A study linking demographics with barriers to adopting energy efficiency measures in the home," Energy, Elsevier, vol. 47(1), pages 348-357.
    26. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    27. Jackson, Jerry, 2010. "Promoting energy efficiency investments with risk management decision tools," Energy Policy, Elsevier, vol. 38(8), pages 3865-3873, August.
    28. Rezvan, A. Taghipour & Gharneh, N. Shams & Gharehpetian, G.B., 2012. "Robust optimization of distributed generation investment in buildings," Energy, Elsevier, vol. 48(1), pages 455-463.
    29. Yu-Lin Huang & Shih-Pei Chou, 2006. "Valuation of the minimum revenue guarantee and the option to abandon in BOT infrastructure projects," Construction Management and Economics, Taylor & Francis Journals, vol. 24(4), pages 379-389.
    30. Svensson, Elin & Berntsson, Thore, 2011. "Planning future investments in emerging energy technologies for pulp mills considering different scenarios for their investment cost development," Energy, Elsevier, vol. 36(11), pages 6508-6519.
    31. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    32. Walraven, Daniël & Laenen, Ben & D'haeseleer, William, 2015. "Economic system optimization of air-cooled organic Rankine cycles powered by low-temperature geothermal heat sources," Energy, Elsevier, vol. 80(C), pages 104-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ouyang, Jianjun & Fu, Jie, 2023. "Energy-saving and subsidy policy decisions for double competition manufacturers," Energy Economics, Elsevier, vol. 117(C).
    2. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2018. "Measurement uncertainty in energy monitoring: Present state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2791-2805.
    3. Gabriel Villa & Sebastián Lozano & Sandra Redondo, 2021. "Data Envelopment Analysis Approach to Energy-Saving Projects Selection in an Energy Service Company," Mathematics, MDPI, vol. 9(2), pages 1-15, January.
    4. Wenjie Zhang & Hongping Yuan, 2019. "Promoting Energy Performance Contracting for Achieving Urban Sustainability: What is the Research Trend?," Energies, MDPI, vol. 12(8), pages 1-18, April.
    5. Cagno, Enrico & Franzò, Simone & Storoni, Elena & Trianni, Andrea, 2022. "A characterisation framework of energy services offered by energy service companies," Applied Energy, Elsevier, vol. 324(C).
    6. Bertrand, Alexandre & Mian, Alberto & Kantor, Ivan & Aggoune, Riad & Maréchal, François, 2019. "Regional waste heat valorisation: A mixed integer linear programming method for energy service companies," Energy, Elsevier, vol. 167(C), pages 454-468.
    7. Bustos, F. & Lazo, C. & Contreras, J. & Fuentes, A., 2016. "Analysis of a solar and aerothermal plant combined with a conventional system in an ESCO model in Chile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1156-1167.
    8. Li, Hong Xian & Li, Yan & Jiang, Boya & Zhang, Limao & Wu, Xianguo & Lin, Jingyi, 2020. "Energy performance optimisation of building envelope retrofit through integrated orthogonal arrays with data envelopment analysis," Renewable Energy, Elsevier, vol. 149(C), pages 1414-1423.
    9. Töppel, Jannick & Tränkler, Timm, 2019. "Modeling energy efficiency insurances and energy performance contracts for a quantitative comparison of risk mitigation potential," Energy Economics, Elsevier, vol. 80(C), pages 842-859.
    10. Lu, Zhijian & Shao, Shuai, 2016. "Impacts of government subsidies on pricing and performance level choice in Energy Performance Contracting: A two-step optimal decision model," Applied Energy, Elsevier, vol. 184(C), pages 1176-1183.
    11. Ackermann, Simon & Szabo, Andrei & Bamberger, Joachim & Steinke, Florian, 2022. "Design and optimization of performance guarantees for hybrid power plants," Energy, Elsevier, vol. 239(PA).
    12. Scarpa, Federico & Tagliafico, Luca A. & Bianco, Vincenzo, 2021. "Financial and energy performance analysis of efficiency measures in residential buildings. A probabilistic approach," Energy, Elsevier, vol. 236(C).
    13. Wenjie Zhang & Hongping Yuan, 2019. "A Bibliometric Analysis of Energy Performance Contracting Research from 2008 to 2018," Sustainability, MDPI, vol. 11(13), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Töppel, Jannick & Tränkler, Timm, 2019. "Modeling energy efficiency insurances and energy performance contracts for a quantitative comparison of risk mitigation potential," Energy Economics, Elsevier, vol. 80(C), pages 842-859.
    2. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2021. "Understanding the risk perception of energy efficiency investments: Investment perspective vs. energy bill perspective," Energy Policy, Elsevier, vol. 159(C).
    3. Bosco, Maria Giovanna & Valeriani, Elisa, 2023. "Energy retrofitting of firms after a natural disaster: A ‘build back better’ strategy," Energy Policy, Elsevier, vol. 179(C).
    4. Lee, P. & Lam, P.T.I. & Lee, W.L. & Chan, E.H.W., 2016. "Analysis of an air-cooled chiller replacement project using a probabilistic approach for energy performance contracts," Applied Energy, Elsevier, vol. 171(C), pages 415-428.
    5. Wenjie Zhang & Hongping Yuan, 2019. "A Bibliometric Analysis of Energy Performance Contracting Research from 2008 to 2018," Sustainability, MDPI, vol. 11(13), pages 1-23, June.
    6. Ahlrichs, Jakob & Rockstuhl, Sebastian & Tränkler, Timm & Wenninger, Simon, 2020. "The impact of political instruments on building energy retrofits: A risk-integrated thermal Energy Hub approach," Energy Policy, Elsevier, vol. 147(C).
    7. Accordini, D. & Cagno, E. & Trianni, A., 2021. "Identification and characterization of decision-making factors over industrial energy efficiency measures in electric motor systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Carstens, Herman & Xia, Xiaohua & Yadavalli, Sarma, 2018. "Measurement uncertainty in energy monitoring: Present state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2791-2805.
    9. Wenjie Zhang & Hongping Yuan, 2019. "Promoting Energy Performance Contracting for Achieving Urban Sustainability: What is the Research Trend?," Energies, MDPI, vol. 12(8), pages 1-18, April.
    10. Ahlrichs, Jakob & Rockstuhl, Sebastian, 2022. "Estimating fair rent increases after building retrofits: A max-min fairness approach," Energy Policy, Elsevier, vol. 164(C).
    11. Cagno, Enrico & Accordini, Davide & Trianni, Andrea & Katic, Mile & Ferrari, Nicolò & Gambaro, Federico, 2022. "Understanding the impacts of energy efficiency measures on a Company’s operational performance: A new framework," Applied Energy, Elsevier, vol. 328(C).
    12. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Qian, Dong & Guo, Ju’e, 2014. "Research on the energy-saving and revenue sharing strategy of ESCOs under the uncertainty of the value of Energy Performance Contracting Projects," Energy Policy, Elsevier, vol. 73(C), pages 710-721.
    14. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Ahlrichs, Jakob, 2022. "The influence of risk perception on energy efficiency investments: Evidence from a German survey," Energy Policy, Elsevier, vol. 167(C).
    15. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    16. Heutel, Garth, 2019. "Prospect theory and energy efficiency," Journal of Environmental Economics and Management, Elsevier, vol. 96(C), pages 236-254.
    17. Lin, Tyrone T. & Huang, Shio-Ling, 2011. "Application of the modified Tobin's q to an uncertain energy-saving project with the real options concept," Energy Policy, Elsevier, vol. 39(1), pages 408-420, January.
    18. Bertoldi, Paolo & Boza-Kiss, Benigna, 2017. "Analysis of barriers and drivers for the development of the ESCO markets in Europe," Energy Policy, Elsevier, vol. 107(C), pages 345-355.
    19. Jackson, Jerry, 2010. "Promoting energy efficiency investments with risk management decision tools," Energy Policy, Elsevier, vol. 38(8), pages 3865-3873, August.
    20. Perroni, Marcos G. & Gouvea da Costa, Sergio E. & Pinheiro de Lima, Edson & Vieira da Silva, Wesley, 2017. "The relationship between enterprise efficiency in resource use and energy efficiency practices adoption," International Journal of Production Economics, Elsevier, vol. 190(C), pages 108-119.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:88:y:2015:i:c:p:234-243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.