IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v57y2013icp287-297.html
   My bibliography  Save this item

Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
  2. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
  3. Hu, Xueyue & Wang, Chunying & Elshkaki, Ayman, 2024. "Material-energy Nexus: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  4. Mohammadi, Mohammad & Noorollahi, Younes & Mohammadi-ivatloo, Behnam & Hosseinzadeh, Mehdi & Yousefi, Hossein & Khorasani, Sasan Torabzadeh, 2018. "Optimal management of energy hubs and smart energy hubs – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 33-50.
  5. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
  6. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
  7. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2021. "Impacts of regional industrial electricity savings on the development of future coal capacity per electricity grid and related air pollution emissions – A case study for China," Applied Energy, Elsevier, vol. 282(PB).
  8. Brunke, Jean-Christian & Blesl, Markus, 2014. "A plant-specific bottom-up approach for assessing the cost-effective energy conservation potential and its ability to compensate rising energy-related costs in the German iron and steel industry," Energy Policy, Elsevier, vol. 67(C), pages 431-446.
  9. Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).
  10. de Raad, Brendon & van Lieshout, Marit & Stougie, Lydia & Ramirez, Andrea, 2023. "Exploring impacts of deployment sequences of industrial mitigation measures on their combined CO2 reduction potential," Energy, Elsevier, vol. 262(PB).
  11. Guangyue Xu & Dong Xue & Hafizur Rehman, 2022. "Dynamic scenario analysis of CO2 emission in China’s cement industry by 2100 under the context of cutting overcapacity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-40, December.
  12. Xiangzhao FENG & Oleg LUGOVOY & Sheng YAN & Hu QIN, 2016. "Co-Benefits of CO2 and NOx Emission Control in China’s Cement Industry," Chinese Journal of Urban and Environmental Studies (CJUES), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-20, December.
  13. Fais, Birgit & Sabio, Nagore & Strachan, Neil, 2016. "The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets," Applied Energy, Elsevier, vol. 162(C), pages 699-712.
  14. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
  15. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2018. "Modeling the multiple benefits of electricity savings for emissions reduction on power grid level: A case study of China’s chemical industry," Applied Energy, Elsevier, vol. 230(C), pages 1603-1632.
  16. Karali, Nihan & Xu, Tengfang & Sathaye, Jayant, 2014. "Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 120(C), pages 133-146.
  17. Talaei, Alireza & Pier, David & Iyer, Aishwarya V. & Ahiduzzaman, Md & Kumar, Amit, 2019. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry," Energy, Elsevier, vol. 170(C), pages 1051-1066.
  18. Chang, Yuan & Huang, Runze & Masanet, Eric, 2014. "The energy, water, and air pollution implications of tapping China's shale gas reserves," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 100-108.
  19. Mirzakhani, M. Amin & Tahouni, Nassim & Panjeshahi, M. Hassan, 2017. "Energy benchmarking of cement industry, based on Process Integration concepts," Energy, Elsevier, vol. 130(C), pages 382-391.
  20. Peng, Bin-Bin & Xu, Jin-Hua & Fan, Ying, 2018. "Modeling uncertainty in estimation of carbon dioxide abatement costs of energy-saving technologies for passenger cars in China," Energy Policy, Elsevier, vol. 113(C), pages 306-319.
  21. Hepburn, Cameron & Teytelboym, Alexander & Cohen, Francois, 2018. "Is Natural Capital Really Substitutable?," INET Oxford Working Papers 2018-12, Institute for New Economic Thinking at the Oxford Martin School, University of Oxford.
  22. Qiang Du & Yi Li & Libiao Bai, 2017. "The Energy Rebound Effect for the Construction Industry: Empirical Evidence from China," Sustainability, MDPI, vol. 9(5), pages 1-11, May.
  23. Li, Jia & Tharakan, Pradeep & Macdonald, Douglas & Liang, Xi, 2013. "Technological, economic and financial prospects of carbon dioxide capture in the cement industry," Energy Policy, Elsevier, vol. 61(C), pages 1377-1387.
  24. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
  25. Kong, Lingbo & Hasanbeigi, Ali & Price, Lynn & Liu, Huanbin, 2017. "Energy conservation and CO2 mitigation potentials in the Chinese pulp and paper industry," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 74-84.
  26. Tingting Xiao & Zhong Liu, 2023. "Air Pollution and Enterprise Energy Efficiency: Evidence from Energy-Intensive Manufacturing Industries in China," Sustainability, MDPI, vol. 15(7), pages 1-17, April.
  27. Du, Huibin & Li, Qun & Liu, Xi & Peng, Binbin & Southworth, Frank, 2021. "Costs and potentials of reducing CO2 emissions in China's transport sector: Findings from an energy system analysis," Energy, Elsevier, vol. 234(C).
  28. Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
  29. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
  30. Wang, Ke & Wang, Shanshan & Liu, Lei & Yue, Hui & Zhang, Ruiqin & Tang, Xiaoyan, 2016. "Environmental co-benefits of energy efficiency improvement in coal-fired power sector: A case study of Henan Province, China," Applied Energy, Elsevier, vol. 184(C), pages 810-819.
  31. Jiang, Xuemei & Zhu, Kunfu & Green, Christopher, 2015. "China's energy saving potential from the perspective of energy efficiency advantages of foreign-invested enterprises," Energy Economics, Elsevier, vol. 49(C), pages 104-112.
  32. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
  33. Miao, Zhuang & Chen, Xiaodong & Baležentis, Tomas, 2021. "Improving energy use and mitigating pollutant emissions across “Three Regions and Ten Urban Agglomerations”: A city-level productivity growth decomposition," Applied Energy, Elsevier, vol. 283(C).
  34. Zhou, Yi & Zhou, Wenji & Wei, Chu, 2023. "Environmental performance of the Chinese cement enterprise: An empirical analysis using a text-based directional vector," Energy Economics, Elsevier, vol. 125(C).
  35. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
  36. Tan, Chang & Yu, Xiang & Guan, Yuru, 2022. "A technology-driven pathway to net-zero carbon emissions for China's cement industry," Applied Energy, Elsevier, vol. 325(C).
  37. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
  38. Gengyu Gao & Min Zhang & Shanshan Wang & Can Wang & RuiQin Zhang, 2022. "Assessment of pollutant emissions reduction potential of energy infrastructure in industrial parks of Henan Province," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(6), pages 8071-8091, June.
  39. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Krol, Maarten & de Bruine, Marco & Geng, Guangpo & Wagner, Fabian & Cofala, Janusz, 2016. "Modeling energy efficiency to improve air quality and health effects of China’s cement industry," Applied Energy, Elsevier, vol. 184(C), pages 574-593.
  40. Doh Dinga, Christian & Wen, Zongguo, 2022. "Many-objective optimization of energy conservation and emission reduction under uncertainty: A case study in China's cement industry," Energy, Elsevier, vol. 253(C).
  41. Long, Xingle & Sun, Mei & Cheng, Faxin & Zhang, Jijian, 2017. "Convergence analysis of eco-efficiency of China’s cement manufacturers through unit root test of panel data," Energy, Elsevier, vol. 134(C), pages 709-717.
  42. Dinga, Christian Doh & Wen, Zongguo, 2022. "China's green deal: Can China's cement industry achieve carbon neutral emissions by 2060?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  43. Andersson, Elias & Karlsson, Magnus & Thollander, Patrik & Paramonova, Svetlana, 2018. "Energy end-use and efficiency potentials among Swedish industrial small and medium-sized enterprises – A dataset analysis from the national energy audit program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 165-177.
  44. Cai, Bofeng & Wang, Jinnan & He, Jie & Geng, Yong, 2016. "Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective," Applied Energy, Elsevier, vol. 166(C), pages 191-200.
  45. Fang Zhang & Hong Fang & Junjie Wu & Damian Ward, 2016. "Environmental Efficiency Analysis of Listed Cement Enterprises in China," Sustainability, MDPI, vol. 8(5), pages 1-19, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.