IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921010655.html
   My bibliography  Save this article

Many-objective optimization of energy conservation and emission reduction in China’s cement industry

Author

Listed:
  • Doh Dinga, Christian
  • Wen, Zongguo

Abstract

Industrial Energy Conservation and Emission Reduction (ECER) management is challenging due to the large number of objectives involved, and the complex synergies/conflicts amongst them. Most studies do not quantify these synergies/conflicts, resulting in high dimension ECER management problems. This study builds a 10-objective problem to optimize 5 heavy metals (Cd, Hg, Pb, As, Cr) and 5 conventional ECER-objectives (economic cost, energy, CO2, PM and NOx) in China’s cement industry. First, NSGA-III is used to calculate optimal objective values under technology application constraints. Second, synergies/conflicts amongst objectives are quantified using Spearman’s correlation. Finally, TOPSIS, Conservation Supply Curves and Quadrant methods are used to generate optimal ECER management policies. Results show that: (1) Optimal solutions are reliable as reflected by algorithm verification metrics – Error rate, Spacing metric and Hypervolume indicator; (2) The 10-objective problem is reduced to a 4-objective problem based on synergies. The four main-objectives are economic cost, energy consumption, CO2 and PM emission control. Therefore, ECER policies should focus on these objectives since optimizing them will synergistically improve all other objectives; (3) The average reduction potential for HMs and conventional objectives is 20% and 25% respectively, with an increase in economic cost of about 44–83 CNY/t; (4) From 72-ECER strategies assessed, 11-key strategies have better economic and environmental performances. They are mostly circular economy strategies utilizing industrial wastes, indicating that ECER policies should shift from traditional end-of-pipe approaches to a more circular economy approach. In sum, the proposed methodology can reduce the complexity of many-objective ECER management through a synergic control.

Suggested Citation

  • Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010655
    DOI: 10.1016/j.apenergy.2021.117714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921010655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Zongguo & Chen, Min & Meng, Fanxin, 2015. "Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis," Energy Policy, Elsevier, vol. 77(C), pages 227-237.
    2. Ning, Yadong & Chen, Kunkun & Zhang, Boya & Ding, Tao & Guo, Fei & Zhang, Ming, 2020. "Energy conservation and emission reduction path selection in China: A simulation based on Bi-Level multi-objective optimization model," Energy Policy, Elsevier, vol. 137(C).
    3. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    4. Xu, Guangyue & Schwarz, Peter & Yang, Hualiu, 2019. "Determining China's CO2 emissions peak with a dynamic nonlinear artificial neural network approach and scenario analysis," Energy Policy, Elsevier, vol. 128(C), pages 752-762.
    5. Sam Aflaki & Paul R. Kleindorfer & Victor Sáenz Miera Polvorinos, 2013. "Finding and Implementing Energy Efficiency Projects in Industrial Facilities," Post-Print hal-00823923, HAL.
    6. Hasanbeigi, Ali & Morrow, William & Masanet, Eric & Sathaye, Jayant & Xu, Tengfang, 2013. "Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China," Energy Policy, Elsevier, vol. 57(C), pages 287-297.
    7. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
    8. Li, Wei & Gao, Shubin, 2018. "Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China's cement industry," Energy, Elsevier, vol. 165(PB), pages 33-54.
    9. Islam, M.S. & Das, Barun K. & Das, Pronob & Rahaman, Md Habibur, 2021. "Techno-economic optimization of a zero emission energy system for a coastal community in Newfoundland, Canada," Energy, Elsevier, vol. 220(C).
    10. Li, Xiaoyu & Yao, Xilong, 2020. "Can energy supply-side and demand-side policies for energy saving and emission reduction be synergistic?--- A simulated study on China's coal capacity cut and carbon tax," Energy Policy, Elsevier, vol. 138(C).
    11. Yeh, Tsai-lien & Chen, Tser-yieth & Lai, Pei-ying, 2010. "A comparative study of energy utilization efficiency between Taiwan and China," Energy Policy, Elsevier, vol. 38(5), pages 2386-2394, May.
    12. Wang, Yihan & Wen, Zongguo & Yao, Jianguo & Doh Dinga, Christian, 2020. "Multi-objective optimization of synergic energy conservation and CO2 emission reduction in China's iron and steel industry under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.
    14. Ali, M.B. & Saidur, R. & Hossain, M.S., 2011. "A review on emission analysis in cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2252-2261, June.
    15. Hasanbeigi, Ali & Menke, Christoph & Therdyothin, Apichit, 2010. "The use of conservation supply curves in energy policy and economic analysis: The case study of Thai cement industry," Energy Policy, Elsevier, vol. 38(1), pages 392-405, January.
    16. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    17. Khanali, Majid & Akram, Asadollah & Behzadi, Javad & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2021. "Multi-objective optimization of energy use and environmental emissions for walnut production using imperialist competitive algorithm," Applied Energy, Elsevier, vol. 284(C).
    18. Ke, Jing & Zheng, Nina & Fridley, David & Price, Lynn & Zhou, Nan, 2012. "Potential energy savings and CO2 emissions reduction of China's cement industry," Energy Policy, Elsevier, vol. 45(C), pages 739-751.
    19. Hosseini-Ardali, Seyed Mohsen & Hazrati-Kalbibaki, Majid & Fattahi, Moslem & Lezsovits, Ferenc, 2020. "Multi-objective optimization of post combustion CO2 capture using methyldiethanolamine (MDEA) and piperazine (PZ) bi-solvent," Energy, Elsevier, vol. 211(C).
    20. Talaei, Alireza & Pier, David & Iyer, Aishwarya V. & Ahiduzzaman, Md & Kumar, Amit, 2019. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry," Energy, Elsevier, vol. 170(C), pages 1051-1066.
    21. Hasanbeigi, Ali & Price, Lynn & Lu, Hongyou & Lan, Wang, 2010. "Analysis of energy-efficiency opportunities for the cement industry in Shandong Province, China: A case study of 16 cement plants," Energy, Elsevier, vol. 35(8), pages 3461-3473.
    22. Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
    23. Yuli Shan & Ya Zhou & Jing Meng & Zhifu Mi & Jingru Liu & Dabo Guan, 2019. "Peak cement‐related CO2 emissions and the changes in drivers in China," Journal of Industrial Ecology, Yale University, vol. 23(4), pages 959-971, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Ming & Ma, Teng & Fang, Chen & Liu, Xiaorui & Guo, Chaoyi & Zhang, Silu & Zhou, Ziqiao & Zhu, Yanlei & Dai, Hancheng & Huang, Chen, 2023. "Negative emission technology is key to decarbonizing China's cement industry," Applied Energy, Elsevier, vol. 329(C).
    2. Yuan, Yuxing & Na, Hongming & Du, Tao & Qiu, Ziyang & Sun, Jingchao & Yan, Tianyi & Che, Zichang, 2023. "Multi-objective optimization and analysis of material and energy flows in a typical steel plant," Energy, Elsevier, vol. 263(PD).
    3. Nehdi, Moncef L. & Marani, Afshin & Zhang, Lei, 2024. "Is net-zero feasible: Systematic review of cement and concrete decarbonization technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    4. Doh Dinga, Christian & Wen, Zongguo, 2022. "Many-objective optimization of energy conservation and emission reduction under uncertainty: A case study in China's cement industry," Energy, Elsevier, vol. 253(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doh Dinga, Christian & Wen, Zongguo, 2022. "Many-objective optimization of energy conservation and emission reduction under uncertainty: A case study in China's cement industry," Energy, Elsevier, vol. 253(C).
    2. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    3. Guangyue Xu & Dong Xue & Hafizur Rehman, 2022. "Dynamic scenario analysis of CO2 emission in China’s cement industry by 2100 under the context of cutting overcapacity," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(8), pages 1-40, December.
    4. Dinga, Christian Doh & Wen, Zongguo, 2022. "China's green deal: Can China's cement industry achieve carbon neutral emissions by 2060?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    5. Tan, Chang & Yu, Xiang & Guan, Yuru, 2022. "A technology-driven pathway to net-zero carbon emissions for China's cement industry," Applied Energy, Elsevier, vol. 325(C).
    6. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
    7. Chen, Hao & Kang, Jia-Ning & Liao, Hua & Tang, Bao-Jun & Wei, Yi-Ming, 2017. "Costs and potentials of energy conservation in China's coal-fired power industry: A bottom-up approach considering price uncertainties," Energy Policy, Elsevier, vol. 104(C), pages 23-32.
    8. Li, Jia & Tharakan, Pradeep & Macdonald, Douglas & Liang, Xi, 2013. "Technological, economic and financial prospects of carbon dioxide capture in the cement industry," Energy Policy, Elsevier, vol. 61(C), pages 1377-1387.
    9. Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
    10. Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
    11. Griffiths, Steve & Sovacool, Benjamin K. & Furszyfer Del Rio, Dylan D. & Foley, Aoife M. & Bazilian, Morgan D. & Kim, Jinsoo & Uratani, Joao M., 2023. "Decarbonizing the cement and concrete industry: A systematic review of socio-technical systems, technological innovations, and policy options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    12. Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
    13. Alessandra Cantini & Leonardo Leoni & Filippo De Carlo & Marcello Salvio & Chiara Martini & Fabrizio Martini, 2021. "Technological Energy Efficiency Improvements in Cement Industries," Sustainability, MDPI, vol. 13(7), pages 1-28, March.
    14. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
    15. Cai, Bofeng & Wang, Jinnan & He, Jie & Geng, Yong, 2016. "Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective," Applied Energy, Elsevier, vol. 166(C), pages 191-200.
    16. Junxiao Wei & Kuang Cen & Yuanbo Geng, 2019. "Evaluation and mitigation of cement CO2 emissions: projection of emission scenarios toward 2030 in China and proposal of the roadmap to a low-carbon world by 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(2), pages 301-328, February.
    17. Wang, Ke & Wang, Shanshan & Liu, Lei & Yue, Hui & Zhang, Ruiqin & Tang, Xiaoyan, 2016. "Environmental co-benefits of energy efficiency improvement in coal-fired power sector: A case study of Henan Province, China," Applied Energy, Elsevier, vol. 184(C), pages 810-819.
    18. Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    19. Wang, Yihan & Wen, Zongguo & Cao, Xin & Dinga, Christian Doh, 2022. "Is information and communications technology effective for industrial energy conservation and emission reduction? Evidence from three energy-intensive industries in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    20. Kong, Lingbo & Hasanbeigi, Ali & Price, Lynn & Liu, Huanbin, 2017. "Energy conservation and CO2 mitigation potentials in the Chinese pulp and paper industry," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 74-84.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.