Dynamic scenario analysis of CO2 emission in China’s cement industry by 2100 under the context of cutting overcapacity
Author
Abstract
Suggested Citation
DOI: 10.1007/s11027-022-10028-3
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ke, Jing & McNeil, Michael & Price, Lynn & Khanna, Nina Zheng & Zhou, Nan, 2013. "Estimation of CO2 emissions from China’s cement production: Methodologies and uncertainties," Energy Policy, Elsevier, vol. 57(C), pages 172-181.
- Branger, Frédéric & Quirion, Philippe, 2015.
"Reaping the carbon rent: Abatement and overallocation profits in the European cement industry, insights from an LMDI decomposition analysis,"
Energy Economics, Elsevier, vol. 47(C), pages 189-205.
- Frédéric Branger & Philippe Quirion, 2014. "Reaping the Carbon Rent: Abatement and Overallocation Profits in the European Cement industry, Insights from an LMDI Decomposition Analysis," Policy Papers 2014.03, FAERE - French Association of Environmental and Resource Economists.
- Branger, Frédéric & Quirion, Philippe, 2014. "Reaping the Carbon Rent: Abatement and Overallocation Profits in the European Cement Industry, Insights from an LMDI Decomposition Analysis," Climate Change and Sustainable Development 184453, Fondazione Eni Enrico Mattei (FEEM).
- Frédéric Branger & Philippe Quirion, 2014. "Reaping the Carbon Rent: Abatement and Overallocation Profits in the European Cement Industry, Insights from an LMDI Decomposition Analysis," Working Papers 2014.77, Fondazione Eni Enrico Mattei.
- Frédéric Branger & Philippe Quirion, 2014. "Reaping the carbon rent: Abatement and overallocation profits in the European cement industry, insights from an LMDI decomposition analysis," Post-Print hal-01137935, HAL.
- Frédéric Branger & Philippe Quirion, 2014. "Reaping the Carbon Rent: Abatement and Overallocation Profits in the European Cement industry, Insights from an LMDI Decomposition Analysis," Working Papers 2014.10, FAERE - French Association of Environmental and Resource Economists.
- Wen, Zongguo & Chen, Min & Meng, Fanxin, 2015. "Evaluation of energy saving potential in China's cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis," Energy Policy, Elsevier, vol. 77(C), pages 227-237.
- Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
- Hasanbeigi, Ali & Morrow, William & Masanet, Eric & Sathaye, Jayant & Xu, Tengfang, 2013. "Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China," Energy Policy, Elsevier, vol. 57(C), pages 287-297.
- Pasche, Markus, 2002. "Technical progress, structural change, and the environmental Kuznets curve," Ecological Economics, Elsevier, vol. 42(3), pages 381-389, September.
- Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Li, Wei & Gao, Shubin, 2018. "Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China's cement industry," Energy, Elsevier, vol. 165(PB), pages 33-54.
- Ke, Jing & Zheng, Nina & Fridley, David & Price, Lynn & Zhou, Nan, 2012. "Potential energy savings and CO2 emissions reduction of China's cement industry," Energy Policy, Elsevier, vol. 45(C), pages 739-751.
- Donglan Zha & Pan Liu & Hui Shi, 2022. "Does population aging aggravate air pollution in China?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(2), pages 1-14, February.
- Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
- Shen, Lei & Gao, Tianming & Zhao, Jianan & Wang, Limao & Wang, Lan & Liu, Litao & Chen, Fengnan & Xue, Jingjing, 2014. "Factory-level measurements on CO2 emission factors of cement production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 337-349.
- Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, 2015.
"Reduced carbon emission estimates from fossil fuel combustion and cement production in China,"
Nature, Nature, vol. 524(7565), pages 335-338, August.
- Zhu Liu & Dabo Guan & Wei Wei & Steven J. Davis & Philippe Ciais & Jin Bai & Shushi Peng & Qiang Zhang & Klaus Hubacek & Gregg Marland & Robert J. Andres & Douglas Crawford-Brown & Jintai Lin & Hongya, "undated". "Reduced carbon emission estimates from fossil fuel combustion and cement production in China," Working Paper 317656, Harvard University OpenScholar.
- Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
- Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
- Xu, Jin-Hua & Fleiter, Tobias & Fan, Ying & Eichhammer, Wolfgang, 2014. "CO2 emissions reduction potential in China’s cement industry compared to IEA’s Cement Technology Roadmap up to 2050," Applied Energy, Elsevier, vol. 130(C), pages 592-602.
- Yuli Shan & Ya Zhou & Jing Meng & Zhifu Mi & Jingru Liu & Dabo Guan, 2019. "Peak cement‐related CO2 emissions and the changes in drivers in China," Journal of Industrial Ecology, Yale University, vol. 23(4), pages 959-971, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Junxiao Wei & Kuang Cen, 2019. "A preliminary calculation of cement carbon dioxide in China from 1949 to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(8), pages 1343-1362, December.
- Tan, Chang & Yu, Xiang & Guan, Yuru, 2022. "A technology-driven pathway to net-zero carbon emissions for China's cement industry," Applied Energy, Elsevier, vol. 325(C).
- Junxiao Wei & Kuang Cen & Yuanbo Geng, 2019. "Evaluation and mitigation of cement CO2 emissions: projection of emission scenarios toward 2030 in China and proposal of the roadmap to a low-carbon world by 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(2), pages 301-328, February.
- Ofosu-Adarkwa, Jeffrey & Xie, Naiming & Javed, Saad Ahmed, 2020. "Forecasting CO2 emissions of China's cement industry using a hybrid Verhulst-GM(1,N) model and emissions' technical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Nayeah Kim & Yun Seop Hwang & Mun Ho Hwang, 2019. "New projection of GHG reduction potentials for Korea’s cement industry and comparison with Roadmap 2030," Energy & Environment, , vol. 30(3), pages 499-521, May.
- Cai, Bofeng & Wang, Jinnan & He, Jie & Geng, Yong, 2016. "Evaluating CO2 emission performance in China’s cement industry: An enterprise perspective," Applied Energy, Elsevier, vol. 166(C), pages 191-200.
- Doh Dinga, Christian & Wen, Zongguo, 2021. "Many-objective optimization of energy conservation and emission reduction in China’s cement industry," Applied Energy, Elsevier, vol. 304(C).
- Cao, Zhi & Shen, Lei & Zhao, Jianan & Liu, Litao & Zhong, Shuai & Yang, Yan, 2016. "Modeling the dynamic mechanism between cement CO2 emissions and clinker quality to realize low-carbon cement," Resources, Conservation & Recycling, Elsevier, vol. 113(C), pages 116-126.
- Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
- Li, Wei & Gao, Shubin, 2018. "Prospective on energy related carbon emissions peak integrating optimized intelligent algorithm with dry process technique application for China's cement industry," Energy, Elsevier, vol. 165(PB), pages 33-54.
- Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina, 2015. "Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry," Applied Energy, Elsevier, vol. 147(C), pages 192-213.
- Shen, Weiguo & Liu, Yi & Yan, Bilan & Wang, Jing & He, Pengtao & Zhou, Congcong & Huo, Xujia & Zhang, Wuzong & Xu, Gelong & Ding, Qingjun, 2017. "Cement industry of China: Driving force, environment impact and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 618-628.
- Shen, Weiguo & Cao, Liu & Li, Qiu & Zhang, Wensheng & Wang, Guiming & Li, Chaochao, 2015. "Quantifying CO2 emissions from China’s cement industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1004-1012.
- Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
- Gao, Tianming & Shen, Lei & Shen, Ming & Liu, Litao & Chen, Fengnan & Gao, Li, 2017. "Evolution and projection of CO2 emissions for China's cement industry from 1980 to 2020," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 522-537.
- Doh Dinga, Christian & Wen, Zongguo, 2022. "Many-objective optimization of energy conservation and emission reduction under uncertainty: A case study in China's cement industry," Energy, Elsevier, vol. 253(C).
- Sheng Zhou & Alun Gu & Qing Tong & Yuefeng Guo & Xinyang Wei, 2022. "Multi‐scenario simulation on reducing CO2 emissions from China's major manufacturing industries targeting 2060," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 850-861, June.
- Fang Zhang & Hong Fang & Junjie Wu & Damian Ward, 2016. "Environmental Efficiency Analysis of Listed Cement Enterprises in China," Sustainability, MDPI, vol. 8(5), pages 1-19, May.
- Chunlei Zhou & Donghai Xuan & Yuhan Miao & Xiaohu Luo & Wensi Liu & Yihong Zhang, 2023. "Accounting CO 2 Emissions of the Cement Industry: Based on an Electricity–Carbon Coupling Analysis," Energies, MDPI, vol. 16(11), pages 1-13, May.
- Dinga, Christian Doh & Wen, Zongguo, 2022. "China's green deal: Can China's cement industry achieve carbon neutral emissions by 2060?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
More about this item
Keywords
Cement industry; CO2 emissions; Scenario analysis; Cointegration analysis; China;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:masfgc:v:27:y:2022:i:8:d:10.1007_s11027-022-10028-3. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.