IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v46y2012icp511-519.html
   My bibliography  Save this item

Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Banister, David, 2016. "Estimating the grid payments necessary to compensate additional costs to prospective electric vehicle owners who provide vehicle-to-grid ancillary services," Energy, Elsevier, vol. 94(C), pages 715-727.
  2. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
  3. Boonstra, Boris C. & Oosterlee, Cornelis W., 2021. "Valuation of electricity storage contracts using the COS method," Applied Mathematics and Computation, Elsevier, vol. 410(C).
  4. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
  5. Atia, Raji & Yamada, Noboru, 2015. "More accurate sizing of renewable energy sources under high levels of electric vehicle integration," Renewable Energy, Elsevier, vol. 81(C), pages 918-925.
  6. Cong Zhang & Haitao Min & Yuanbin Yu & Dai Wang & Justin Luke & Daniel Opila & Samveg Saxena, 2016. "Using CPE Function to Size Capacitor Storage for Electric Vehicles and Quantifying Battery Degradation during Different Driving Cycles," Energies, MDPI, vol. 9(11), pages 1-23, November.
  7. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
  8. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
  9. Braeuer, Fritz & Rominger, Julian & McKenna, Russell & Fichtner, Wolf, 2019. "Battery storage systems: An economic model-based analysis of parallel revenue streams and general implications for industry," Applied Energy, Elsevier, vol. 239(C), pages 1424-1440.
  10. Martinez-Laserna, E. & Gandiaga, I. & Sarasketa-Zabala, E. & Badeda, J. & Stroe, D.-I. & Swierczynski, M. & Goikoetxea, A., 2018. "Battery second life: Hype, hope or reality? A critical review of the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 701-718.
  11. Lin, Mingqiang & Wu, Denggao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2023. "Health prognosis for lithium-ion battery with multi-feature optimization," Energy, Elsevier, vol. 264(C).
  12. García-Villalobos, J. & Zamora, I. & San Martín, J.I. & Asensio, F.J. & Aperribay, V., 2014. "Plug-in electric vehicles in electric distribution networks: A review of smart charging approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 717-731.
  13. Marongiu, Andrea & Roscher, Marco & Sauer, Dirk Uwe, 2015. "Influence of the vehicle-to-grid strategy on the aging behavior of lithium battery electric vehicles," Applied Energy, Elsevier, vol. 137(C), pages 899-912.
  14. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
  15. Cui, Yingzhi & Zuo, Pengjian & Du, Chunyu & Gao, Yunzhi & Yang, Jie & Cheng, Xinqun & Ma, Yulin & Yin, Geping, 2018. "State of health diagnosis model for lithium ion batteries based on real-time impedance and open circuit voltage parameters identification method," Energy, Elsevier, vol. 144(C), pages 647-656.
  16. Tejas-Dilipsing Patil & Emmanuel Vinot & Simone Ehrenberger & Rochdi Trigui & Eduardo Redondo-Iglesias, 2023. "Sensitivity Analysis of Battery Aging for Model-Based PHEV Use Scenarios," Energies, MDPI, vol. 16(4), pages 1-17, February.
  17. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
  18. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
  19. Morsy Nour & José Pablo Chaves-Ávila & Gaber Magdy & Álvaro Sánchez-Miralles, 2020. "Review of Positive and Negative Impacts of Electric Vehicles Charging on Electric Power Systems," Energies, MDPI, vol. 13(18), pages 1-34, September.
  20. Sarasketa-Zabala, E. & Martinez-Laserna, E. & Berecibar, M. & Gandiaga, I. & Rodriguez-Martinez, L.M. & Villarreal, I., 2016. "Realistic lifetime prediction approach for Li-ion batteries," Applied Energy, Elsevier, vol. 162(C), pages 839-852.
  21. Ximing Wang & Hongwen He & Fengchun Sun & Jieli Zhang, 2015. "Application Study on the Dynamic Programming Algorithm for Energy Management of Plug-in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(4), pages 1-20, April.
  22. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
  23. Kaschub, Thomas & Jochem, Patrick & Fichtner, Wolf, 2016. "Solar energy storage in German households: profitability, load changes and flexibility," Energy Policy, Elsevier, vol. 98(C), pages 520-532.
  24. Stefan Englberger & Holger Hesse & Daniel Kucevic & Andreas Jossen, 2019. "A Techno-Economic Analysis of Vehicle-to-Building: Battery Degradation and Efficiency Analysis in the Context of Coordinated Electric Vehicle Charging," Energies, MDPI, vol. 12(5), pages 1-17, March.
  25. Arslan, Okan & Yıldız, Barış & Ekin Karaşan, Oya, 2014. "Impacts of battery characteristics, driver preferences and road network features on travel costs of a plug-in hybrid electric vehicle (PHEV) for long-distance trips," Energy Policy, Elsevier, vol. 74(C), pages 168-178.
  26. Mostafa Shibl & Loay Ismail & Ahmed Massoud, 2021. "Electric Vehicles Charging Management Using Machine Learning Considering Fast Charging and Vehicle-to-Grid Operation," Energies, MDPI, vol. 14(19), pages 1-22, September.
  27. Ximing Wang & Hongwen He & Fengchun Sun & Xiaokun Sun & Henglu Tang, 2013. "Comparative Study on Different Energy Management Strategies for Plug-In Hybrid Electric Vehicles," Energies, MDPI, vol. 6(11), pages 1-20, October.
  28. Ahmadian, Ali & Sedghi, Mahdi & Elkamel, Ali & Fowler, Michael & Aliakbar Golkar, Masoud, 2018. "Plug-in electric vehicle batteries degradation modeling for smart grid studies: Review, assessment and conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2609-2624.
  29. Henni, Sarah & Becker, Jonas & Staudt, Philipp & vom Scheidt, Frederik & Weinhardt, Christof, 2022. "Industrial peak shaving with battery storage using a probabilistic forecasting approach: Economic evaluation of risk attitude," Applied Energy, Elsevier, vol. 327(C).
  30. Lorenzo, Charles & Bouquain, David & Hibon, Samuel & Hissel, Daniel, 2021. "Synthesis of degradation mechanisms and of their impacts on degradation rates on proton-exchange membrane fuel cells and lithium-ion nickel–manganese–cobalt batteries in hybrid transport applicati," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  31. Salpakari, Jyri & Rasku, Topi & Lindgren, Juuso & Lund, Peter D., 2017. "Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation," Applied Energy, Elsevier, vol. 190(C), pages 800-812.
  32. Amad Ali & Hafiz Abdul Muqeet & Tahir Khan & Asif Hussain & Muhammad Waseem & Kamran Ali Khan Niazi, 2023. "IoT-Enabled Campus Prosumer Microgrid Energy Management, Architecture, Storage Technologies, and Simulation Tools: A Comprehensive Study," Energies, MDPI, vol. 16(4), pages 1-19, February.
  33. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert & Veneroni, Marco, 2017. "Battery degradation and behaviour for electric vehicles: Review and numerical analyses of several models," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 158-187.
  34. Noel, Lance & McCormack, Regina, 2014. "A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus," Applied Energy, Elsevier, vol. 126(C), pages 246-255.
  35. Zheng, Menglian & Wang, Xinhao & Meinrenken, Christoph J. & Ding, Yi, 2018. "Economic and environmental benefits of coordinating dispatch among distributed electricity storage," Applied Energy, Elsevier, vol. 210(C), pages 842-855.
  36. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2019. "The electric vehicle routing problem with energy consumption uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 225-255.
  37. Martín Antonio Rodríguez Licea & Francisco Javier Pérez Pinal & Allan Giovanni Soriano Sánchez, 2021. "An Overview on Electric-Stress Degradation Empirical Models for Electrochemical Devices in Smart Grids," Energies, MDPI, vol. 14(8), pages 1-23, April.
  38. Azadfar, Elham & Sreeram, Victor & Harries, David, 2015. "The investigation of the major factors influencing plug-in electric vehicle driving patterns and charging behaviour," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1065-1076.
  39. Pelletier, Samuel & Jabali, Ola & Laporte, Gilbert, 2018. "Charge scheduling for electric freight vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 115(C), pages 246-269.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.