IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v81y2015icp918-925.html
   My bibliography  Save this article

More accurate sizing of renewable energy sources under high levels of electric vehicle integration

Author

Listed:
  • Atia, Raji
  • Yamada, Noboru

Abstract

Electric vehicles (EVs) and distributed generation are expected to play a major role in modern power systems. Although many studies have introduced novel models to integrate distributed generation into high levels of EV-adoption scenarios, none has considered EV-embedded battery performance degradation and its economic effect on system planning. Based on well-established models and data to emulate the capacity fading of lithium-ion batteries, the current work presents a mixed-integer linear programming optimization framework with decision variables to size renewable energy resources (RESs) in modern microgrids. The objective function aims to minimize the total cost of the system while guaranteeing a profitable operation level of vehicle-to-grid (V2G) application, narrowing the gap between design stage and real-life daily operation patterns. Stochastic modeling is used to incorporate the effect of different uncertainties involved in the issue. A case study on a residential system in Okinawa, Japan, is introduced to quantitatively illustrate how a profitable V2G operation can affect RES sizing. The results reveal that accounting for the economic operation of EVs leads to the integration of significantly higher capacities of RESs compared with a sizing model that excessively relies on V2G and does not recognize battery-fading economics.

Suggested Citation

  • Atia, Raji & Yamada, Noboru, 2015. "More accurate sizing of renewable energy sources under high levels of electric vehicle integration," Renewable Energy, Elsevier, vol. 81(C), pages 918-925.
  • Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:918-925
    DOI: 10.1016/j.renene.2015.04.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115002906
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.04.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Göransson, Lisa & Karlsson, Sten & Johnsson, Filip, 2010. "Integration of plug-in hybrid electric vehicles in a regional wind-thermal power system," Energy Policy, Elsevier, vol. 38(10), pages 5482-5492, October.
    2. Drude, Lukas & Pereira Junior, Luiz Carlos & Rüther, Ricardo, 2014. "Photovoltaics (PV) and electric vehicle-to-grid (V2G) strategies for peak demand reduction in urban regions in Brazil in a smart grid environment," Renewable Energy, Elsevier, vol. 68(C), pages 443-451.
    3. Wang, Jianhui & Liu, Cong & Ton, Dan & Zhou, Yan & Kim, Jinho & Vyas, Anantray, 2011. "Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power," Energy Policy, Elsevier, vol. 39(7), pages 4016-4021, July.
    4. Juul, Nina & Meibom, Peter, 2011. "Optimal configuration of an integrated power and transport system," Energy, Elsevier, vol. 36(5), pages 3523-3530.
    5. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    6. Lund, Henrik & Kempton, Willett, 2008. "Integration of renewable energy into the transport and electricity sectors through V2G," Energy Policy, Elsevier, vol. 36(9), pages 3578-3587, September.
    7. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    8. Han, Sekyung & Han, Soohee & Aki, Hirohisa, 2014. "A practical battery wear model for electric vehicle charging applications," Applied Energy, Elsevier, vol. 113(C), pages 1100-1108.
    9. Lunz, Benedikt & Yan, Zexiong & Gerschler, Jochen Bernhard & Sauer, Dirk Uwe, 2012. "Influence of plug-in hybrid electric vehicle charging strategies on charging and battery degradation costs," Energy Policy, Elsevier, vol. 46(C), pages 511-519.
    10. Ekman, Claus Krog, 2011. "On the synergy between large electric vehicle fleet and high wind penetration – An analysis of the Danish case," Renewable Energy, Elsevier, vol. 36(2), pages 546-553.
    11. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    12. Zhang, Qi & Tezuka, Tetsuo & Ishihara, Keiichi N. & Mclellan, Benjamin C., 2012. "Integration of PV power into future low-carbon smart electricity systems with EV and HP in Kansai Area, Japan," Renewable Energy, Elsevier, vol. 44(C), pages 99-108.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir Ahadi & Shrutidhara Sarma & Jae Sang Moon & Sangkyun Kang & Jang-Ho Lee, 2018. "A Robust Optimization for Designing a Charging Station Based on Solar and Wind Energy for Electric Vehicles of a Smart Home in Small Villages," Energies, MDPI, vol. 11(7), pages 1-15, July.
    2. Bracco, Stefano & Delfino, Federico & Ferro, Giulio & Pagnini, Luisa & Robba, Michela & Rossi, Mansueto, 2018. "Energy planning of sustainable districts: Towards the exploitation of small size intermittent renewables in urban areas," Applied Energy, Elsevier, vol. 228(C), pages 2288-2297.
    3. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.
    4. Heba M. Abdullah & Rashad M. Kamel & Anas Tahir & Azzam Sleit & Adel Gastli, 2020. "The Simultaneous Impact of EV Charging and PV Inverter Reactive Power on the Hosting Distribution System’s Performance: A Case Study in Kuwait," Energies, MDPI, vol. 13(17), pages 1-22, August.
    5. Roshandel, Ramin & Parhizkar, Tarannom, 2016. "Degradation based optimization framework for long term applications of energy systems, case study: Solid oxide fuel cell stacks," Energy, Elsevier, vol. 107(C), pages 172-181.
    6. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    7. Pfeifer, Antun & Krajačić, Goran & Ljubas, Davor & Duić, Neven, 2019. "Increasing the integration of solar photovoltaics in energy mix on the road to low emissions energy system – Economic and environmental implications," Renewable Energy, Elsevier, vol. 143(C), pages 1310-1317.
    8. Zeng, Bo & Feng, Jiahuan & Zhang, Jianhua & Liu, Zongqi, 2017. "An optimal integrated planning method for supporting growing penetration of electric vehicles in distribution systems," Energy, Elsevier, vol. 126(C), pages 273-284.
    9. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    10. Raji Atia & Noboru Yamada, 2016. "Distributed Renewable Generation and Storage System Sizing Based on Smart Dispatch of Microgrids," Energies, MDPI, vol. 9(3), pages 1-16, March.
    11. Xu, Weiwei & Zhou, Dan & Huang, Xiaoming & Lou, Boliang & Liu, Dong, 2020. "Optimal allocation of power supply systems in industrial parks considering multi-energy complementarity and demand response," Applied Energy, Elsevier, vol. 275(C).
    12. Groppi, Daniele & Pfeifer, Antun & Garcia, Davide Astiaso & Krajačić, Goran & Duić, Neven, 2021. "A review on energy storage and demand side management solutions in smart energy islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Luo, Lizi & Gu, Wei & Wu, Zhi & Zhou, Suyang, 2019. "Joint planning of distributed generation and electric vehicle charging stations considering real-time charging navigation," Applied Energy, Elsevier, vol. 242(C), pages 1274-1284.
    14. F, Feijoo & A, Pfeifer & L, Herc & D, Groppi & N, Duić, 2022. "A long-term capacity investment and operational energy planning model with power-to-X and flexibility technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Schücking, Maximilian & Jochem, Patrick & Fichtner, Wolf & Wollersheim, Olaf & Stella, Kevin, 2017. "Charging strategies for economic operations of electric vehicles in commercial applications," MPRA Paper 91599, University Library of Munich, Germany.
    16. Wu, Yaling & Liu, Zhongbing & Liu, Jiangyang & Xiao, Hui & Liu, Ruimiao & Zhang, Ling, 2022. "Optimal battery capacity of grid-connected PV-battery systems considering battery degradation," Renewable Energy, Elsevier, vol. 181(C), pages 10-23.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richardson, David B., 2013. "Electric vehicles and the electric grid: A review of modeling approaches, Impacts, and renewable energy integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 247-254.
    2. Bellekom, Sandra & Benders, René & Pelgröm, Steef & Moll, Henk, 2012. "Electric cars and wind energy: Two problems, one solution? A study to combine wind energy and electric cars in 2020 in The Netherlands," Energy, Elsevier, vol. 45(1), pages 859-866.
    3. Hota, Ashish Ranjan & Juvvanapudi, Mahesh & Bajpai, Prabodh, 2014. "Issues and solution approaches in PHEV integration to smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 217-229.
    4. Schill, Wolf-Peter & Gerbaulet, Clemens, 2015. "Power System Impacts of Electric Vehicles in Germany: Charging with Coal or Renewables," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 156, pages 185-196.
    5. Verma, Aman & Raj, Ratan & Kumar, Mayank & Ghandehariun, Samane & Kumar, Amit, 2015. "Assessment of renewable energy technologies for charging electric vehicles in Canada," Energy, Elsevier, vol. 86(C), pages 548-559.
    6. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
    7. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.
    8. Rahman, Imran & Vasant, Pandian M. & Singh, Balbir Singh Mahinder & Abdullah-Al-Wadud, M. & Adnan, Nadia, 2016. "Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1039-1047.
    9. Soares M.C. Borba, Bruno & Szklo, Alexandre & Schaeffer, Roberto, 2012. "Plug-in hybrid electric vehicles as a way to maximize the integration of variable renewable energy in power systems: The case of wind generation in northeastern Brazil," Energy, Elsevier, vol. 37(1), pages 469-481.
    10. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
    11. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    12. Schuller, Alexander & Flath, Christoph M. & Gottwalt, Sebastian, 2015. "Quantifying load flexibility of electric vehicles for renewable energy integration," Applied Energy, Elsevier, vol. 151(C), pages 335-344.
    13. Li, Ying & Davis, Chris & Lukszo, Zofia & Weijnen, Margot, 2016. "Electric vehicle charging in China’s power system: Energy, economic and environmental trade-offs and policy implications," Applied Energy, Elsevier, vol. 173(C), pages 535-554.
    14. Poullikkas, Andreas, 2015. "Sustainable options for electric vehicle technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1277-1287.
    15. Salpakari, Jyri & Rasku, Topi & Lindgren, Juuso & Lund, Peter D., 2017. "Flexibility of electric vehicles and space heating in net zero energy houses: an optimal control model with thermal dynamics and battery degradation," Applied Energy, Elsevier, vol. 190(C), pages 800-812.
    16. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "A methodology for economic and environmental analysis of electric vehicles with different operational conditions," Energy, Elsevier, vol. 61(C), pages 118-127.
    17. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    18. Ruben Garruto & Michela Longo & Wahiba Yaïci & Federica Foiadelli, 2020. "Connecting Parking Facilities to the Electric Grid: A Vehicle-to-Grid Feasibility Study in a Railway Station’s Car Park," Energies, MDPI, vol. 13(12), pages 1-23, June.
    19. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    20. Ashique, Ratil H. & Salam, Zainal & Bin Abdul Aziz, Mohd Junaidi & Bhatti, Abdul Rauf, 2017. "Integrated photovoltaic-grid dc fast charging system for electric vehicle: A review of the architecture and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1243-1257.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:81:y:2015:i:c:p:918-925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.