IDEAS home Printed from https://ideas.repec.org/r/eee/eneeco/v34y2012i3p762-771.html
   My bibliography  Save this item

A review of uncertainties in technology experience curves

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Xiao, Jin & Li, Guohao & Xie, Ling & Wang, Shouyang & Yu, Lean, 2021. "Decarbonizing China's power sector by 2030 with consideration of technological progress and cross-regional power transmission," Energy Policy, Elsevier, vol. 150(C).
  2. Wilson, Charlie, 2012. "Up-scaling, formative phases, and learning in the historical diffusion of energy technologies," Energy Policy, Elsevier, vol. 50(C), pages 81-94.
  3. Yu Sang Chang & Byong-Jin You & Hann Earl Kim, 2020. "Dynamic Trends of Fine Particulate Matter Exposure across 190 Countries: Analysis and Key Insights," Sustainability, MDPI, vol. 12(7), pages 1-34, April.
  4. Mauleón, Ignacio, 2016. "Photovoltaic learning rate estimation: Issues and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 507-524.
  5. Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  6. Narbel, Patrick André & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 91-97.
  7. Paul Kerr & Donald R. Noble & Jonathan Hodges & Henry Jeffrey, 2021. "Implementing Radical Innovation in Renewable Energy Experience Curves," Energies, MDPI, vol. 14(9), pages 1-28, April.
  8. Chen, Yuche & Zhang, Yunteng & Fan, Yueyue & Hu, Kejia & Zhao, Jianyou, 2017. "A dynamic programming approach for modeling low-carbon fuel technology adoption considering learning-by-doing effect," Applied Energy, Elsevier, vol. 185(P1), pages 825-835.
  9. Tu, Qiang & Betz, Regina & Mo, Jianlei & Fan, Ying & Liu, Yu, 2019. "Achieving grid parity of wind power in China – Present levelized cost of electricity and future evolution," Applied Energy, Elsevier, vol. 250(C), pages 1053-1064.
  10. Heuberger, Clara F. & Rubin, Edward S. & Staffell, Iain & Shah, Nilay & Mac Dowell, Niall, 2017. "Power capacity expansion planning considering endogenous technology cost learning," Applied Energy, Elsevier, vol. 204(C), pages 831-845.
  11. Iyer, Gokul C. & Clarke, Leon E. & Edmonds, James A. & Hultman, Nathan E. & McJeon, Haewon C., 2015. "Long-term payoffs of near-term low-carbon deployment policies," Energy Policy, Elsevier, vol. 86(C), pages 493-505.
  12. Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
  13. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
  14. Duch-Brown, Néstor & Costa-Campi, María Teresa, 2015. "The diffusion of patented oil and gas technology with environmental uses: A forward patent citation analysis," Energy Policy, Elsevier, vol. 83(C), pages 267-276.
  15. Tadeusz Skoczkowski & Sławomir Bielecki & Joanna Wojtyńska, 2019. "Long-Term Projection of Renewable Energy Technology Diffusion," Energies, MDPI, vol. 12(22), pages 1-24, November.
  16. Wiser, Ryan & Millstein, Dev, 2020. "Evaluating the economic return to public wind energy research and development in the United States," Applied Energy, Elsevier, vol. 261(C).
  17. Paul Lehmann & Patrik Söderholm, 2018. "Can Technology-Specific Deployment Policies Be Cost-Effective? The Case of Renewable Energy Support Schemes," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 475-505, October.
  18. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
  19. Hernandez-Negron, Christian G. & Baker, Erin & Goldstein, Anna P., 2023. "A hypothesis for experience curves of related technologies with an application to wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
  20. Claire Nicolas & Stéphane Tchung-Ming & Emmanuel Hache, 2016. "Energy transition in transportation under cost uncertainty, an assessment based on robust optimization," Working Papers hal-02475943, HAL.
  21. Madsen, Dorte Nørgaard & Hansen, Jan Petter, 2019. "Outlook of solar energy in Europe based on economic growth characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  22. Esmaieli, M. & Ahmadian, M., 2018. "The effect of research and development incentive on wind power investment, a system dynamics approach," Renewable Energy, Elsevier, vol. 126(C), pages 765-773.
  23. Nicodemus, Julia Haltiwanger, 2018. "Technological learning and the future of solar H2: A component learning comparison of solar thermochemical cycles and electrolysis with solar PV," Energy Policy, Elsevier, vol. 120(C), pages 100-109.
  24. Fattahi, A. & Sijm, J. & Faaij, A., 2020. "A systemic approach to analyze integrated energy system modeling tools: A review of national models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  25. Clas‐Otto Wene, 2016. "Future energy system development depends on past learning opportunities," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 5(1), pages 16-32, January.
  26. Wei, Max & Smith, Sarah J. & Sohn, Michael D., 2017. "Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US," Applied Energy, Elsevier, vol. 191(C), pages 346-357.
  27. Gunther Glenk & Rebecca Meier & Stefan Reichelstein, 2021. "Cost Dynamics of Clean Energy Technologies," Schmalenbach Journal of Business Research, Springer, vol. 73(2), pages 179-206, June.
  28. Schmid, Eva & Knopf, Brigitte, 2015. "Quantifying the long-term economic benefits of European electricity system integration," Energy Policy, Elsevier, vol. 87(C), pages 260-269.
  29. Deeney, Peter & Cummins, Mark & Heintz, Katharina & Pryce, Mary T., 2021. "A real options based decision support tool for R&D investment: Application to CO2 recycling technology," European Journal of Operational Research, Elsevier, vol. 289(2), pages 696-711.
  30. Frauke Wiese, 2016. "Resilience Thinking as an Interdisciplinary Guiding Principle for Energy System Transitions," Resources, MDPI, vol. 5(4), pages 1-17, September.
  31. Bento, Nuno & Gianfrate, Gianfranco & Groppo, Sara Virginia, 2019. "Do crowdfunding returns reward risk? Evidences from clean-tech projects," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 107-116.
  32. Fox, Jacob & Axsen, Jonn & Jaccard, Mark, 2017. "Picking Winners: Modelling the Costs of Technology-specific Climate Policy in the U.S. Passenger Vehicle Sector," Ecological Economics, Elsevier, vol. 137(C), pages 133-147.
  33. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
  34. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng & Vaz-Serra, Paulo, 2022. "Economic and environmental impacts of public investment in clean energy RD&D," Energy Policy, Elsevier, vol. 168(C).
  35. Sun, Jun & Xiong, Xiaoqian & Wang, Mudan & Du, Hua & Li, Jintao & Zhou, Dandan & Zuo, Jian, 2019. "Microalgae biodiesel production in China: A preliminary economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 296-306.
  36. Aguilera, Roberto F., 2014. "Production costs of global conventional and unconventional petroleum," Energy Policy, Elsevier, vol. 64(C), pages 134-140.
  37. Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015. "Mitigation strategies and energy technology learning: An assessment with the POLES model," Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
  38. Upstill, Garrett & Hall, Peter, 2018. "Estimating the learning rate of a technology with multiple variants: The case of carbon storage," Energy Policy, Elsevier, vol. 121(C), pages 498-505.
  39. Martin Stuermer & Maxwell Fleming & Ian Lange & Sayeh Shojaeinia, 2023. "Growth and Resources in Space: Pushing the Final Frontier?," Working Papers 2023-02, Colorado School of Mines, Division of Economics and Business.
  40. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
  41. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
  42. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
  43. Mauleón, Ignacio & Hamoudi, Hamid, 2017. "Photovoltaic and wind cost decrease estimation: Implications for investment analysis," Energy, Elsevier, vol. 137(C), pages 1054-1065.
  44. Dantas, Guilherme A. & Legey, Luiz F.L. & Mazzone, Antonella, 2013. "Energy from sugarcane bagasse in Brazil: An assessment of the productivity and cost of different technological routes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 356-364.
  45. Edenhofer, Ottmar & Hirth, Lion & Knopf, Brigitte & Pahle, Michael & Schlömer, Steffen & Schmid, Eva & Ueckerdt, Falko, 2013. "On the economics of renewable energy sources," Energy Economics, Elsevier, vol. 40(S1), pages 12-23.
  46. Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
  47. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  48. Narbel, Patrick A. & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Discussion Papers 2014/14, Norwegian School of Economics, Department of Business and Management Science.
  49. Leibowicz, Benjamin D. & Krey, Volker & Grubler, Arnulf, 2016. "Representing spatial technology diffusion in an energy system optimization model," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 350-363.
  50. Bossink, Bart, 2020. "Learning strategies in sustainable energy demonstration projects: What organizations learn from sustainable energy demonstrations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  51. Zakerinia, Saleh, 2018. "Understanding the Role of Transportation in Meeting California’s Greenhouse Gas Emissions Reduction Target: A Focus on Technology Forcing Policies, Interactions with the Electric Sector and Mitigation," Institute of Transportation Studies, Working Paper Series qt0r69m651, Institute of Transportation Studies, UC Davis.
  52. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying Endogenous Learning Models in Energy System Optimization," Energies, MDPI, vol. 14(16), pages 1-21, August.
  53. Yao, Xilong & Liu, Yang & Qu, Shiyou, 2015. "When will wind energy achieve grid parity in China? – Connecting technological learning and climate finance," Applied Energy, Elsevier, vol. 160(C), pages 697-704.
  54. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
  55. Millinger, M. & Ponitka, J. & Arendt, O. & Thrän, D., 2017. "Competitiveness of advanced and conventional biofuels: Results from least-cost modelling of biofuel competition in Germany," Energy Policy, Elsevier, vol. 107(C), pages 394-402.
  56. Strupeit, Lars & Neij, Lena, 2017. "Cost dynamics in the deployment of photovoltaics: Insights from the German market for building-sited systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 948-960.
  57. Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying endogenous learning models in energy system optimization," Papers 2106.06373, arXiv.org.
  58. Felix Groba & Barbara Breitschopf, 2013. "Impact of Renewable Energy Policy and Use on Innovation: A Literature Review," Discussion Papers of DIW Berlin 1318, DIW Berlin, German Institute for Economic Research.
  59. Densing, Martin & Turton, Hal & Bäuml, Georg, 2012. "Conditions for the successful deployment of electric vehicles – A global energy system perspective," Energy, Elsevier, vol. 47(1), pages 137-149.
  60. N. Edward Coulson & Zhi Dong & Tien Foo Sing, 2021. "Estimating Supply Functions for Residential Real Estate Attributes," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 49(2), pages 397-432, June.
  61. Beck, Marisa & Rivers, Nicholas & Wigle, Randall, 2018. "How do learning externalities influence the evaluation of Ontario's renewables support policies?," Energy Policy, Elsevier, vol. 117(C), pages 86-99.
  62. Lilis Yuaningsih & R. Adjeng Mariana Febrianti, 2021. "The Nexus between Technological Advancement and CO2 Emissions in Malaysia," International Journal of Energy Economics and Policy, Econjournals, vol. 11(6), pages 160-169.
  63. Glenk, Gunther & Meier, Rebecca & Reichelstein, Stefan, 2021. "Cost dynamics of clean energy technologies," ZEW Discussion Papers 21-054, ZEW - Leibniz Centre for European Economic Research.
  64. Shona Pennock & Anna Garcia-Teruel & Donald R. Noble & Owain Roberts & Adrian de Andres & Charlotte Cochrane & Henry Jeffrey, 2022. "Deriving Current Cost Requirements from Future Targets: Case Studies for Emerging Offshore Renewable Energy Technologies," Energies, MDPI, vol. 15(5), pages 1-19, February.
  65. Fukui, Rokuhei & Greenfield, Carl & Pogue, Katie & van der Zwaan, Bob, 2017. "Experience curve for natural gas production by hydraulic fracturing," Energy Policy, Elsevier, vol. 105(C), pages 263-268.
  66. Aui, Alvina & Wang, Yu, 2023. "Cellulosic ethanol production: Assessment of the impacts of learning and plant capacity," Technological Forecasting and Social Change, Elsevier, vol. 197(C).
  67. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  68. Best, Rohan, 2023. "Equitable reverse auctions supporting household energy investments," Energy Policy, Elsevier, vol. 177(C).
  69. Kosugi, Takanobu, 2023. "Learning rate matters: Reexamining optimal power expansion planning with endogenized technological experience curves," Energy, Elsevier, vol. 283(C).
  70. C. Wilson & A. Grubler & N. Bauer & V. Krey & K. Riahi, 2013. "Future capacity growth of energy technologies: are scenarios consistent with historical evidence?," Climatic Change, Springer, vol. 118(2), pages 381-395, May.
  71. Duffy, Aidan & Hand, Maureen & Wiser, Ryan & Lantz, Eric & Dalla Riva, Alberto & Berkhout, Volker & Stenkvist, Maria & Weir, David & Lacal-Arántegui, Roberto, 2020. "Land-based wind energy cost trends in Germany, Denmark, Ireland, Norway, Sweden and the United States," Applied Energy, Elsevier, vol. 277(C).
  72. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
  73. Odam, Neil & de Vries, Frans P., 2020. "Innovation modelling and multi-factor learning in wind energy technology," Energy Economics, Elsevier, vol. 85(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.