Long-Term Projection of Renewable Energy Technology Diffusion
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Bodas Freitas, Isabel Maria & Dantas, Eva & Iizuka, Michiko, 2012.
"The Kyoto mechanisms and the diffusion of renewable energy technologies in the BRICS,"
Energy Policy, Elsevier, vol. 42(C), pages 118-128.
- Isabel Maria Bodas Freitas & Eva Dantas & Michiko Iizuka, 2012. "The Kyoto mechanisms and the diffusion of renewable energy technologies in the BRICS," Post-Print hal-01488032, HAL.
- Isabel Maria Bodas Freitas & Eva Dantas & Michiko Iizuka, 2012. "The Kyoto mechanisms and the diffusion of renewable energy technologies in the BRICS," Grenoble Ecole de Management (Post-Print) hal-01488032, HAL.
- Hayashi, Daisuke & Huenteler, Joern & Lewis, Joanna I., 2018. "Gone with the wind: A learning curve analysis of China's wind power industry," Energy Policy, Elsevier, vol. 120(C), pages 38-51.
- Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015.
"Bending the learning curve,"
Energy Economics, Elsevier, vol. 52(S1), pages 86-99.
- Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2015. "Bending The Learning Curve," Climate Change and Sustainable Development 206836, Fondazione Eni Enrico Mattei (FEEM).
- Jan Witajewski-Baltvilks & Elena Verdolini & Massimo Tavoni, 2015. "Bending The Learning Curve," Working Papers 2015.65, Fondazione Eni Enrico Mattei.
- repec:hal:spmain:info:hdl:2441/jff6fcqc8e6bbhnlvps4rou6 is not listed on IDEAS
- Amro Elshurafa & Shahad Albardi & Carlo Andrea Bollino, 2017. "Estimating the Learning Curve of Solar PV Balance-of-Systems for Over 20 Countries," Discussion Papers ks-2017--dp015, King Abdullah Petroleum Studies and Research Center.
- Furlan, Claudia & Mortarino, Cinzia, 2018. "Forecasting the impact of renewable energies in competition with non-renewable sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1879-1886.
- Pan, Haoran & Kohler, Jonathan, 2007. "Technological change in energy systems: Learning curves, logistic curves and input-output coefficients," Ecological Economics, Elsevier, vol. 63(4), pages 749-758, September.
- Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Climatic Change, Springer, vol. 123(3), pages 427-441, April.
- Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
- Verdolini, Elena & Vona, Francesco & Popp, David, 2018.
"Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?,"
Energy Policy, Elsevier, vol. 116(C), pages 242-256.
- Verdolini, Elena & Vona, Francesco & Popp, David, 2016. "Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?," MITP: Mitigation, Innovation and Transformation Pathways 244327, Fondazione Eni Enrico Mattei (FEEM).
- Elena Verdolini & Francesco Vona & David Popp, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," Post-Print hal-03471734, HAL.
- Elena Verdolini & Francesco Vona & David Popp, 2016. "Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?," NBER Working Papers 22454, National Bureau of Economic Research, Inc.
- Elena Verdolini & Francesco Vona & David Popp, 2016. "Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?," Working Papers id:11125, eSocialSciences.
- Elena Verdolini & Francesco Vona & David Popp, 2016. "Bridging the Gap: Do Fast Reacting Fossil Technologies Facilitate Renewable Energy Diffusion?," Working Papers 2016.51, Fondazione Eni Enrico Mattei.
- Elena Verdolini & Francesco Vona & David Popp, 2018. "Bridging the gap: Do fast-reacting fossil technologies facilitate renewable energy diffusion?," SciencePo Working papers Main hal-03471734, HAL.
- Gunnar Luderer & Volker Krey & Katherine Calvin & James Merrick & Silvana Mima & Robert Pietzcker & Jasper van Vliet & Kenichi Wada, 2014. "The role of renewable energy in climate stabilization: results from the EMF27 scenarios," Post-Print halshs-00961843, HAL.
- Grosse, E. H. & Glock, C. H. & Müller, Seb., 2015. "Production economics and the learning curve: A Meta-Analysis," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 74127, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Comin, Diego & Mestieri, Martí, 2014.
"Technology Diffusion: Measurement, Causes, and Consequences,"
Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 2, pages 565-622,
Elsevier.
- Diego A. Comin & Martí Mestieri, 2013. "Technology Diffusion: Measurement, Causes and Consequences," NBER Working Papers 19052, National Bureau of Economic Research, Inc.
- Comin, Diego & Mestieri, Marti, 2013. "Technology Diffusion:Measurement, Causes and Consequences," TSE Working Papers 13-420, Toulouse School of Economics (TSE).
- Comin, Diego & Mestieri, MartÃ, 2014. "Technology Diffusion: Measurement, Causes and Consequences," CEPR Discussion Papers 10163, C.E.P.R. Discussion Papers.
- Helm, Carsten & Mier, Mathias, 2019. "On the efficient market diffusion of intermittent renewable energies," Energy Economics, Elsevier, vol. 80(C), pages 812-830.
- Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
- Grosse, Eric H. & Glock, Christoph H. & Müller, Sebastian, 2015. "Production economics and the learning curve: A meta-analysis," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 401-412.
- Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
- Jimenez, Maritza & Franco, Carlos J. & Dyner, Isaac, 2016. "Diffusion of renewable energy technologies: The need for policy in Colombia," Energy, Elsevier, vol. 111(C), pages 818-829.
- Pfeiffer, Birte & Mulder, Peter, 2013.
"Explaining the diffusion of renewable energy technology in developing countries,"
Energy Economics, Elsevier, vol. 40(C), pages 285-296.
- Pohl, Birte & Mulder, Peter, 2013. "Explaining the Diffusion of Renewable Energy Technology in Developing Countries," GIGA Working Papers 217, GIGA German Institute of Global and Area Studies.
- de La Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2013.
"Predicting the costs of photovoltaic solar modules in 2020 using experience curve models,"
Energy, Elsevier, vol. 62(C), pages 341-348.
- Arnaud de La Tour & Matthieu Glachant & Yann Ménière, 2013. "Predicting the costs of photovoltaic solar modules in 2020 using experience curve models," Post-Print hal-01522961, HAL.
- Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
- Harris, Tyler M. & Devkota, Jay P. & Khanna, Vikas & Eranki, Pragnya L. & Landis, Amy E., 2018. "Logistic growth curve modeling of US energy production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 46-57.
- Kumar, Rajesh & Agarwala, Arun, 2016. "Renewable energy technology diffusion model for techno-economics feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1515-1524.
- Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
- Neij, L, 1999. "Cost dynamics of wind power," Energy, Elsevier, vol. 24(5), pages 375-389.
- Ferioli, F. & Schoots, K. & van der Zwaan, B.C.C., 2009. "Use and limitations of learning curves for energy technology policy: A component-learning hypothesis," Energy Policy, Elsevier, vol. 37(7), pages 2525-2535, July.
- Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
- Hansen, J.P. & Narbel, P.A. & Aksnes, D.L., 2017. "Limits to growth in the renewable energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 769-774.
- Bolwig, Simon & Bazbauers, Gatis & Klitkou, Antje & Lund, Peter D. & Blumberga, Andra & Gravelsins, Armands & Blumberga, Dagnija, 2019. "Review of modelling energy transitions pathways with application to energy system flexibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 440-452.
- Corsatea, Teodora Diana & Giaccaria, Sergio & Covrig, Catalin-Felix & Zaccarelli, Nicola & Ardelean, Mircea, 2016. "RES diffusion and R&D investments in the flexibilisation of the European electricity networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1069-1082.
- Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
- Felix Creutzig & Peter Agoston & Jan Christoph Goldschmidt & Gunnar Luderer & Gregory Nemet & Robert C. Pietzcker, 2017. "The underestimated potential of solar energy to mitigate climate change," Nature Energy, Nature, vol. 2(9), pages 1-9, September.
- Horbach, Jens & Rammer, Christian, 2018. "Energy transition in Germany and regional spill-overs: The diffusion of renewable energy in firms," Energy Policy, Elsevier, vol. 121(C), pages 404-414.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sana Sayadi & Jan Akander & Abolfazl Hayati & Mattias Gustafsson & Mathias Cehlin, 2023. "Comparison of Space Cooling Systems from Energy and Economic Perspectives for a Future City District in Sweden," Energies, MDPI, vol. 16(9), pages 1-22, April.
- Polzin, Friedemann & Sanders, Mark & Serebriakova, Alexandra, 2021. "Finance in global transition scenarios: Mapping investments by technology into finance needs by source," Energy Economics, Elsevier, vol. 99(C).
- Sławomir Bielecki & Tadeusz Skoczkowski & Lidia Sobczak & Marcin Wołowicz, 2022. "Electricity Usage Settlement System Based on a Cryptocurrency Instrument," Energies, MDPI, vol. 15(19), pages 1-35, September.
- Dominika Čeryová & Tatiana Bullová & Natália Turčeková & Izabela Adamičková & Danka Moravčíková & Peter Bielik, 2020. "Assessment of the Renewable Energy Sector Performance Using Selected Indicators in European Union Countries," Resources, MDPI, vol. 9(9), pages 1-15, August.
- Sławomir Bielecki & Tadeusz Skoczkowski & Lidia Sobczak & Janusz Buchoski & Łukasz Maciąg & Piotr Dukat, 2021. "Impact of the Lockdown during the COVID-19 Pandemic on Electricity Use by Residential Users," Energies, MDPI, vol. 14(4), pages 1-32, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Mauleón, Ignacio, 2016. "Photovoltaic learning rate estimation: Issues and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 507-524.
- Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
- Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
- Grafström, Jonas & Poudineh, Rahmat, 2021. "A review of problems associated with learning curves for solar and wind power technologies," Ratio Working Papers 347, The Ratio Institute.
- Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Schauf, Magnus & Schwenen, Sebastian, 2021. "Mills of progress grind slowly? Estimating learning rates for onshore wind energy," Energy Economics, Elsevier, vol. 104(C).
- Duffy, Aidan & Hand, Maureen & Wiser, Ryan & Lantz, Eric & Dalla Riva, Alberto & Berkhout, Volker & Stenkvist, Maria & Weir, David & Lacal-Arántegui, Roberto, 2020. "Land-based wind energy cost trends in Germany, Denmark, Ireland, Norway, Sweden and the United States," Applied Energy, Elsevier, vol. 277(C).
- Hernandez-Negron, Christian G. & Baker, Erin & Goldstein, Anna P., 2023. "A hypothesis for experience curves of related technologies with an application to wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Odam, Neil & de Vries, Frans P., 2020. "Innovation modelling and multi-factor learning in wind energy technology," Energy Economics, Elsevier, vol. 85(C).
- Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
- Gunther Glenk & Rebecca Meier & Stefan Reichelstein, 2021. "Cost Dynamics of Clean Energy Technologies," Schmalenbach Journal of Business Research, Springer, vol. 73(2), pages 179-206, June.
- Mauleón, Ignacio & Hamoudi, Hamid, 2017. "Photovoltaic and wind cost decrease estimation: Implications for investment analysis," Energy, Elsevier, vol. 137(C), pages 1054-1065.
- Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
- Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
- Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
- Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
- Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying endogenous learning models in energy system optimization," Papers 2106.06373, arXiv.org.
More about this item
Keywords
photovoltaics; wind energy; energy projection; learning curves; logistic curves;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4261-:d:285004. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.