My bibliography
Save this item
Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
- Bottmer, Lea & Croux, Christophe & Wilms, Ines, 2022. "Sparse regression for large data sets with outliers," European Journal of Operational Research, Elsevier, vol. 297(2), pages 782-794.
- Abolghasemi, Mahdi & Tarr, Garth & Bergmeir, Christoph, 2024. "Machine learning applications in hierarchical time series forecasting: Investigating the impact of promotions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 597-615.
- Karray, Salma & Martín-Herrán, Guiomar & Zaccour, Georges, 2020. "Pricing of demand-related products: Can ignoring cross-category effect be a smart choice?," International Journal of Production Economics, Elsevier, vol. 223(C).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Ma, Shaohui & Fildes, Robert, 2021. "Retail sales forecasting with meta-learning," European Journal of Operational Research, Elsevier, vol. 288(1), pages 111-128.
- Naragain Phumchusri & Thiti Chewcharat & Supawish Kanokpongsakorn, 2024. "Price promotion optimization model for multiperiod planning: a case study of beauty category products sold in a convenience store chain," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 23(2), pages 164-178, April.
- Sule Birim & Ipek Kazancoglu & Sachin Kumar Mangla & Aysun Kahraman & Yigit Kazancoglu, 2024. "The derived demand for advertising expenses and implications on sustainability: a comparative study using deep learning and traditional machine learning methods," Annals of Operations Research, Springer, vol. 339(1), pages 131-161, August.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Sagaert, Yves R. & Kourentzes, Nikolaos & De Vuyst, Stijn & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "Incorporating macroeconomic leading indicators in tactical capacity planning," International Journal of Production Economics, Elsevier, vol. 209(C), pages 12-19.
- Li, Xishu & Yin, Ying & Manrique, David Vergara & Bäck, Thomas, 2021. "Lifecycle forecast for consumer technology products with limited sales data," International Journal of Production Economics, Elsevier, vol. 239(C).
- Hoeltgebaum, Henrique & Borenstein, Denis & Fernandes, Cristiano & Veiga, Álvaro, 2021. "A score-driven model of short-term demand forecasting for retail distribution centers," Journal of Retailing, Elsevier, vol. 97(4), pages 715-725.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Hewage, Harsha Chamara & Perera, H. Niles & De Baets, Shari, 2022. "Forecast adjustments during post-promotional periods," European Journal of Operational Research, Elsevier, vol. 300(2), pages 461-472.
- He Jiang, 2022. "A novel robust structural quadratic forecasting model and applications," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1156-1180, September.
- Ma, Shaohui & Fildes, Robert, 2017. "A retail store SKU promotions optimization model for category multi-period profit maximization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 680-692.
- Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
- Mayukh Dass & Masoud Moradi & Fereshteh Zihagh, 2023. "Forecasting purchase rates of new products introduced in existing categories," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(3), pages 385-408, September.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Tine Van Calster & Filip Van den Bossche & Bart Baesens & Wilfried Lemahieu, 2020. "Profit-oriented sales forecasting: a comparison of forecasting techniques from a business perspective," Papers 2002.00949, arXiv.org.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
- Alexander Faehnle & Mariangela Guidolin, 2021. "Dynamic Pricing Recognition on E-Commerce Platforms with VAR Processes," Forecasting, MDPI, vol. 3(1), pages 1-15, March.
- Li, W. & Fok, D. & Franses, Ph.H.B.F., 2019. "Forecasting own brand sales: Does incorporating competition help?," Econometric Institute Research Papers EI2019-35, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Veiga, Claudimar Pereira da & Veiga, Cássia Rita Pereira da & Puchalski, Weslly & Coelho, Leandro dos Santos & Tortato, Ubiratã, 2016. "Demand forecasting based on natural computing approaches applied to the foodstuff retail segment," Journal of Retailing and Consumer Services, Elsevier, vol. 31(C), pages 174-181.
- Emir Zunic & Kemal Korjenic & Kerim Hodzic & Dzenana Donko, 2020. "Application of Facebook's Prophet Algorithm for Successful Sales Forecasting Based on Real-world Data," Papers 2005.07575, arXiv.org.
- Verstraete, Gylian & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "A data-driven framework for predicting weather impact on high-volume low-margin retail products," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 169-177.
- Ma, Shaohui & Fildes, Robert, 2022. "The performance of the global bottom-up approach in the M5 accuracy competition: A robustness check," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1492-1499.
- Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
- Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Xuan Bi & Gediminas Adomavicius & William Li & Annie Qu, 2022. "Improving Sales Forecasting Accuracy: A Tensor Factorization Approach with Demand Awareness," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1644-1660, May.
- Fildes, Robert & Goodwin, Paul & Önkal, Dilek, 2019. "Use and misuse of information in supply chain forecasting of promotion effects," International Journal of Forecasting, Elsevier, vol. 35(1), pages 144-156.
- Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
- Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
- Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
- Naragain Phumchusri & Warot Kosawanitchakarn & Sirawich Chawanapranee & Sirawish Srimook, 2023. "Evaluating promotional pricing effectiveness using convenience store daily sales data," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(5), pages 362-373, October.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
- Evgeny A. Antipov & Elena B. Pokryshevskaya, 2020. "Interpretable machine learning for demand modeling with high-dimensional data using Gradient Boosting Machines and Shapley values," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 355-364, October.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "The M5 competition: Background, organization, and implementation," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1325-1336.
- Vladimir Kovtun & Avi Giloni & Clifford Hurvich & Sridhar Seshadri, 2023. "Pivot Clustering to Minimize Error in Forecasting Aggregated Demand Streams Each Following an Autoregressive Moving Average Model," Stats, MDPI, vol. 6(4), pages 1-28, November.
- Cui, Hailong & Rajagopalan, Sampath & Ward, Amy R., 2020. "Predicting product return volume using machine learning methods," European Journal of Operational Research, Elsevier, vol. 281(3), pages 612-627.
- De Gooijer Jan G. & Zerom Dawit, 2020. "Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-15, January.