IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v149y2003i2p268-281.html
   My bibliography  Save this item

A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. V. Van Peteghem & M. Vanhoucke, 2009. "Using Resource Scarceness Characteristics to Solve the Multi-Mode Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/595, Ghent University, Faculty of Economics and Business Administration.
  2. Lova, Antonio & Tormos, Pilar & Cervantes, Mariamar & Barber, Federico, 2009. "An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes," International Journal of Production Economics, Elsevier, vol. 117(2), pages 302-316, February.
  3. Glock, Christoph H. & Grosse, Eric H. & Abedinnia, Hamid & Emde, Simon, 2019. "An integrated model to improve ergonomic and economic performance in order picking by rotating pallets," European Journal of Operational Research, Elsevier, vol. 273(2), pages 516-534.
  4. Linfang Shen & Kuoyu Liu & Jinfei Chai & Weibin Ma & Xiaoxiong Guo & Yao Li & Peng Zhao & Boying Liu, 2022. "Research on the Mathematical Model for Optimal Allocation of Human Resources in the Operation and Maintenance Units of a Heavy Haul Railway," Mathematics, MDPI, vol. 10(19), pages 1-18, October.
  5. Elloumi, Sonda & Fortemps, Philippe, 2010. "A hybrid rank-based evolutionary algorithm applied to multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 205(1), pages 31-41, August.
  6. Buddhakulsomsiri, Jirachai & Kim, David S., 2007. "Priority rule-based heuristic for multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting," European Journal of Operational Research, Elsevier, vol. 178(2), pages 374-390, April.
  7. Hartmann, Sönke & Briskorn, Dirk, 2008. "A survey of variants and extensions of the resource-constrained project scheduling problem," Working Paper Series 02/2008, Hamburg School of Business Administration (HSBA).
  8. Sepehr Proon & Mingzhou Jin, 2011. "A genetic algorithm with neighborhood search for the resource‐constrained project scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(2), pages 73-82, March.
  9. Coelho, José & Vanhoucke, Mario, 2011. "Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers," European Journal of Operational Research, Elsevier, vol. 213(1), pages 73-82, August.
  10. Feifei Li & Zhe Xu, 2018. "A multi-agent system for distributed multi-project scheduling with two-stage decomposition," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-24, October.
  11. T Wauters & K Verbeeck & G Vanden Berghe & P De Causmaecker, 2011. "Learning agents for the multi-mode project scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 281-290, February.
  12. Kemmoé Tchomté, Sylverin & Gourgand, Michel, 2009. "Particle swarm optimization: A study of particle displacement for solving continuous and combinatorial optimization problems," International Journal of Production Economics, Elsevier, vol. 121(1), pages 57-67, September.
  13. Rashidi, Eghbal & Parsafard, Mohsen & Medal, Hugh & Li, Xiaopeng, 2016. "Optimal traffic calming: A mixed-integer bi-level programming model for locating sidewalks and crosswalks in a multimodal transportation network to maximize pedestrians’ safety and network usability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 91(C), pages 33-50.
  14. D. Debels & M. Vanhoucke, 2005. "A Bi-Population Based Genetic Algorithm for the Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/294, Ghent University, Faculty of Economics and Business Administration.
  15. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
  16. Osman Hürol Türkakın & David Arditi & Ekrem Manisalı, 2021. "Comparison of Heuristic Priority Rules in the Solution of the Resource-Constrained Project Scheduling Problem," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
  17. Dayal Madhukar & Verma, Sanjay, 2015. "Multi-processor Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2015-03-25, Indian Institute of Management Ahmedabad, Research and Publication Department.
  18. Raja Awais Liaqait & Shermeen Hamid & Salman Sagheer Warsi & Azfar Khalid, 2021. "A Critical Analysis of Job Shop Scheduling in Context of Industry 4.0," Sustainability, MDPI, vol. 13(14), pages 1-19, July.
  19. Chen, Chung-Yang & Liu, Heng-An & Song, Je-Yi, 2013. "Integrated projects planning in IS departments: A multi-period multi-project selection and assignment approach with a computerized implementation," European Journal of Operational Research, Elsevier, vol. 229(3), pages 683-694.
  20. Gutjahr, Walter J., 2015. "Bi-Objective Multi-Mode Project Scheduling Under Risk Aversion," European Journal of Operational Research, Elsevier, vol. 246(2), pages 421-434.
  21. Alfredo S. Ramos & Pablo A. Miranda-Gonzalez & Samuel Nucamendi-Guillén & Elias Olivares-Benitez, 2023. "A Formulation for the Stochastic Multi-Mode Resource-Constrained Project Scheduling Problem Solved with a Multi-Start Iterated Local Search Metaheuristic," Mathematics, MDPI, vol. 11(2), pages 1-25, January.
  22. Konstantinos G. Zografos & Michael A. Madas & Konstantinos N. Androutsopoulos, 2017. "Increasing airport capacity utilisation through optimum slot scheduling: review of current developments and identification of future needs," Journal of Scheduling, Springer, vol. 20(1), pages 3-24, February.
  23. Beşikci, Umut & Bilge, Ümit & Ulusoy, Gündüz, 2015. "Multi-mode resource constrained multi-project scheduling and resource portfolio problem," European Journal of Operational Research, Elsevier, vol. 240(1), pages 22-31.
  24. Yangyang Liang & Nanfang Cui & Tian Wang & Erik Demeulemeester, 2019. "Robust resource-constrained max-NPV project scheduling with stochastic activity duration," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(1), pages 219-254, March.
  25. Buddhakulsomsiri, Jirachai & Kim, David S., 2006. "Properties of multi-mode resource-constrained project scheduling problems with resource vacations and activity splitting," European Journal of Operational Research, Elsevier, vol. 175(1), pages 279-295, November.
  26. Wang, Jujie & Xu, Wenjie & Zhang, Yue & Dong, Jian, 2022. "A novel air quality prediction and early warning system based on combined model of optimal feature extraction and intelligent optimization," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  27. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
  28. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
  29. V. Van Peteghem & M. Vanhoucke, 2009. "An Artificial Immune System for the Multi-Mode Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 09/555, Ghent University, Faculty of Economics and Business Administration.
  30. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
  31. Yu, Zeting & Feng, Chunyu & Lai, Yanhua & Xu, Guoping & Wang, Daohan, 2022. "Performance assessment and optimization of two novel cogeneration systems integrating proton exchange membrane fuel cell with organic flash cycle for low temperature geothermal heat recovery," Energy, Elsevier, vol. 243(C).
  32. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustín Barrios-Sarmiento, 2022. "An adaptative bacterial foraging optimization algorithm for solving the MRCPSP with discounted cash flows," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(2), pages 221-248, July.
  33. Hartmann, Sönke & Briskorn, Dirk, 2010. "A survey of variants and extensions of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 207(1), pages 1-14, November.
  34. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
  35. Moumene, Khaled & Ferland, Jacques A., 2009. "Activity list representation for a generalization of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 199(1), pages 46-54, November.
  36. Van Peteghem, Vincent & Vanhoucke, Mario, 2014. "An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances," European Journal of Operational Research, Elsevier, vol. 235(1), pages 62-72.
  37. Tseng, Lin-Yu & Chen, Shih-Chieh, 2006. "A hybrid metaheuristic for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 175(2), pages 707-721, December.
  38. Nieves Brisaboa & Luisa Carpente & Ana Cerdeira-Pena & Silvia Lorenzo-Freire, 2015. "Optimization in dubbing scheduling," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(3), pages 685-702, October.
  39. Florian Mischek & Nysret Musliu, 2021. "A local search framework for industrial test laboratory scheduling," Annals of Operations Research, Springer, vol. 302(2), pages 533-562, July.
  40. Dayal Madhukar & Verma, Sanjay, 2014. "Breadth-first and Best-first Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2014-10-04, Indian Institute of Management Ahmedabad, Research and Publication Department.
  41. V. Van Peteghem & M. Vanhoucke, 2008. "A Genetic Algorithm for the Multi-Mode Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/494, Ghent University, Faculty of Economics and Business Administration.
  42. Kadri, Roubila Lilia & Boctor, Fayez F., 2018. "An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case," European Journal of Operational Research, Elsevier, vol. 265(2), pages 454-462.
  43. He, Zhengwen & Liu, Renjing & Jia, Tao, 2012. "Metaheuristics for multi-mode capital-constrained project payment scheduling," European Journal of Operational Research, Elsevier, vol. 223(3), pages 605-613.
  44. Weglarz, Jan & Józefowska, Joanna & Mika, Marek & Waligóra, Grzegorz, 2011. "Project scheduling with finite or infinite number of activity processing modes - A survey," European Journal of Operational Research, Elsevier, vol. 208(3), pages 177-205, February.
  45. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
  46. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
  47. D. Debels & M. Vanhoucke, 2005. "A Decomposition-Based Heuristic For The Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/293, Ghent University, Faculty of Economics and Business Administration.
  48. Zhengwen He & Nengmin Wang & Pengxiang Li, 2014. "Simulated annealing for financing cost distribution based project payment scheduling from a joint perspective," Annals of Operations Research, Springer, vol. 213(1), pages 203-220, February.
  49. D. Debels & M. Vanhoucke, 2004. "An Electromagnetism Meta-Heuristic For The Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/251, Ghent University, Faculty of Economics and Business Administration.
  50. Drexl, Andreas & Nikulin, Yuri, 2005. "Multicriteria time window-constrained project scheduling with applications to airport gate assignment. Part I: Methodology," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 595, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
  51. He, Zhengwen & Wang, Nengmin & Jia, Tao & Xu, Yu, 2009. "Simulated annealing and tabu search for multi-mode project payment scheduling," European Journal of Operational Research, Elsevier, vol. 198(3), pages 688-696, November.
  52. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha, 2014. "Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 175-186.
  53. Geiger, Martin Josef, 2017. "A multi-threaded local search algorithm and computer implementation for the multi-mode, resource-constrained multi-project scheduling problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 729-741.
  54. Balouka, Noemie & Cohen, Izack, 2021. "A robust optimization approach for the multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 291(2), pages 457-470.
  55. Liu, Zhenyuan & Han, Shuihua & Li, Chao & Gupta, Shivam & Sivarajah, Uthayasankar, 2022. "Leveraging customer engagement to improve the operational efficiency of social commerce start-ups," Journal of Business Research, Elsevier, vol. 140(C), pages 572-582.
  56. Wei He & Wenjing Li & Wei Wang, 2021. "Developing a Resource Allocation Approach for Resource-Constrained Construction Operation under Multi-Objective Operation," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
  57. Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.
  58. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2008. "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 495-508, March.
  59. Chen, Jiaqiong & Askin, Ronald G., 2009. "Project selection, scheduling and resource allocation with time dependent returns," European Journal of Operational Research, Elsevier, vol. 193(1), pages 23-34, February.
  60. Colvin, Matthew & Maravelias, Christos T., 2011. "R&D pipeline management: Task interdependencies and risk management," European Journal of Operational Research, Elsevier, vol. 215(3), pages 616-628, December.
  61. Heng Kuang & S. Jack Hu & Jeonghan Ko, 2016. "A dynamic programming approach to integrated assembly planning and supplier assignment with lead time constraints," International Journal of Production Research, Taylor & Francis Journals, vol. 54(9), pages 2691-2708, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.