IDEAS home Printed from https://ideas.repec.org/p/rug/rugwps/04-251.html
   My bibliography  Save this paper

An Electromagnetism Meta-Heuristic For The Resource-Constrained Project Scheduling Problem

Author

Listed:
  • D. DEBELS
  • M. VANHOUCKE

Abstract

Recently, a new heuristic algorithm for global optimization has been proposed by Birbil and Fang (2003), referred to as Electromagnetism (EM). This technique is based on the electromagnetism theory of physics, and simulates attraction and repulsion of sample points in order to move towards an optimal solution. In this paper, we have extended the EM methodology for combinatorial optimization problems. To that purpose, we use the EM framework for solving the well-known resource-constrained project scheduling problem (RCPSP) heuristically. We rely on problem-specific characteristics to adapt the original EM framework to the problem under study. We present computational experiments on a standard benchmark dataset, compare the results of the different modifications on the original EM framework with current state-of-the-art heuristics, and show that the procedure is capable of producing consistently good results for challenging instances of the resource-constrained project scheduling problem. We also give directions for future research in order to make the EM framework competitive with the current state-of-the-art heuristics.

Suggested Citation

  • D. Debels & M. Vanhoucke, 2004. "An Electromagnetism Meta-Heuristic For The Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 04/251, Ghent University, Faculty of Economics and Business Administration.
  • Handle: RePEc:rug:rugwps:04/251
    as

    Download full text from publisher

    File URL: http://wps-feb.ugent.be/Papers/wp_04_251.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Alcaraz & C. Maroto, 2001. "A Robust Genetic Algorithm for Resource Allocation in Project Scheduling," Annals of Operations Research, Springer, vol. 102(1), pages 83-109, February.
    2. Bouleimen, K. & Lecocq, H., 2003. "A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version," European Journal of Operational Research, Elsevier, vol. 149(2), pages 268-281, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    2. Debels, D. & Vanhoucke, M., 2006. "Meta-Heuristic resource constrained project scheduling: solution space restrictions and neighbourhood extensions," Vlerick Leuven Gent Management School Working Paper Series 2006-18, Vlerick Leuven Gent Management School.
    3. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    4. V. Van Peteghem & M. Vanhoucke, 2008. "A Genetic Algorithm for the Multi-Mode Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/494, Ghent University, Faculty of Economics and Business Administration.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kemmoé Tchomté, Sylverin & Gourgand, Michel, 2009. "Particle swarm optimization: A study of particle displacement for solving continuous and combinatorial optimization problems," International Journal of Production Economics, Elsevier, vol. 121(1), pages 57-67, September.
    2. Yang-Kuei Lin & Chin Soon Chong, 2017. "Fast GA-based project scheduling for computing resources allocation in a cloud manufacturing system," Journal of Intelligent Manufacturing, Springer, vol. 28(5), pages 1189-1201, June.
    3. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    4. Peteghem, Vincent Van & Vanhoucke, Mario, 2010. "A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 201(2), pages 409-418, March.
    5. Kolisch, Rainer & Hartmann, Sonke, 2006. "Experimental investigation of heuristics for resource-constrained project scheduling: An update," European Journal of Operational Research, Elsevier, vol. 174(1), pages 23-37, October.
    6. D. Debels & M. Vanhoucke, 2005. "A Decomposition-Based Heuristic For The Resource-Constrained Project Scheduling Problem," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 05/293, Ghent University, Faculty of Economics and Business Administration.
    7. Valls, Vicente & Ballestin, Francisco & Quintanilla, Sacramento, 2008. "A hybrid genetic algorithm for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(2), pages 495-508, March.
    8. Feifei Li & Zhe Xu, 2018. "A multi-agent system for distributed multi-project scheduling with two-stage decomposition," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-24, October.
    9. Dieter Debels & Mario Vanhoucke, 2007. "A Decomposition-Based Genetic Algorithm for the Resource-Constrained Project-Scheduling Problem," Operations Research, INFORMS, vol. 55(3), pages 457-469, June.
    10. Debels, Dieter & Vanhoucke, Mario, 2005. "A Bi-Population Based Genetic Algorithm for the Resource-Constrained Project Scheduling Problem," Vlerick Leuven Gent Management School Working Paper Series 2005-8, Vlerick Leuven Gent Management School.
    11. Moumene, Khaled & Ferland, Jacques A., 2009. "Activity list representation for a generalization of the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 199(1), pages 46-54, November.
    12. Tseng, Lin-Yu & Chen, Shih-Chieh, 2006. "A hybrid metaheuristic for the resource-constrained project scheduling problem," European Journal of Operational Research, Elsevier, vol. 175(2), pages 707-721, December.
    13. Abdollah Arasteh, 2020. "Considering Project Management Activities for Engineering Design Groups," SN Operations Research Forum, Springer, vol. 1(4), pages 1-29, December.
    14. Ilkyeong Moon & Sanghyup Lee & Moonsoo Shin & Kwangyeol Ryu, 2016. "Evolutionary resource assignment for workload-based production scheduling," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 375-388, April.
    15. Luis F. Machado-Domínguez & Carlos D. Paternina-Arboleda & Jorge I. Vélez & Agustin Barrios-Sarmiento, 2021. "A memetic algorithm to address the multi-node resource-constrained project scheduling problem," Journal of Scheduling, Springer, vol. 24(4), pages 413-429, August.
    16. Kadri, Roubila Lilia & Boctor, Fayez F., 2018. "An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: The single mode case," European Journal of Operational Research, Elsevier, vol. 265(2), pages 454-462.
    17. Ranjbar, Mohammad & De Reyck, Bert & Kianfar, Fereydoon, 2009. "A hybrid scatter search for the discrete time/resource trade-off problem in project scheduling," European Journal of Operational Research, Elsevier, vol. 193(1), pages 35-48, February.
    18. C-C Chang & R-S Chen, 2007. "Project advancement and its applications to multi-air-route quality budget allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(8), pages 1008-1020, August.
    19. Lova, Antonio & Tormos, Pilar & Cervantes, Mariamar & Barber, Federico, 2009. "An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes," International Journal of Production Economics, Elsevier, vol. 117(2), pages 302-316, February.
    20. Dayal Madhukar & Verma, Sanjay, 2015. "Multi-processor Exact Procedures for Regular Measures of the Multi-mode RCPSP," IIMA Working Papers WP2015-03-25, Indian Institute of Management Ahmedabad, Research and Publication Department.

    More about this item

    Keywords

    electromagnetism; meta-heuristics; resource-constrained project scheduling;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rug:rugwps:04/251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nathalie Verhaeghe (email available below). General contact details of provider: https://edirc.repec.org/data/ferugbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.