IDEAS home Printed from https://ideas.repec.org/r/eee/ejores/v148y2003i1p92-101.html
   My bibliography  Save this item

A note on a dynamic space-allocation method for outbound containers

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Youn Ju Woo & Jang-Ho Song & Kap Hwan Kim, 2016. "Pricing storage of outbound containers in container terminals," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 644-668, December.
  2. Azab, Ahmed & Morita, Hiroshi, 2022. "Coordinating truck appointments with container relocations and retrievals in container terminals under partial appointments information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 160(C).
  3. Chen, Lu & Lu, Zhiqiang, 2012. "The storage location assignment problem for outbound containers in a maritime terminal," International Journal of Production Economics, Elsevier, vol. 135(1), pages 73-80.
  4. Feng, Yuanjun & Song, Dong-Ping & Li, Dong, 2022. "Smart stacking for import containers using customer information at automated container terminals," European Journal of Operational Research, Elsevier, vol. 301(2), pages 502-522.
  5. Feng, Xuehao & He, Yucheng & Kim, Kap-Hwan, 2022. "Space planning considering congestion in container terminal yards," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 52-77.
  6. Jiang, Xinjia & Lee, Loo Hay & Chew, Ek Peng & Han, Yongbin & Tan, Kok Choon, 2012. "A container yard storage strategy for improving land utilization and operation efficiency in a transshipment hub port," European Journal of Operational Research, Elsevier, vol. 221(1), pages 64-73.
  7. Chen, Xiaojing & Li, Feng & Jia, Bin & Wu, Jianjun & Gao, Ziyou & Liu, Ronghui, 2021. "Optimizing storage location assignment in an automotive Ro-Ro terminal," Transportation Research Part B: Methodological, Elsevier, vol. 143(C), pages 249-281.
  8. Park, Taejin & Choe, Ri & Hun Kim, Young & Ryel Ryu, Kwang, 2011. "Dynamic adjustment of container stacking policy in an automated container terminal," International Journal of Production Economics, Elsevier, vol. 133(1), pages 385-392, September.
  9. Voß, Andre & Guckenbiehl, Gabriel & Schütt, Holger & Buer, Tobias, 2016. "A storage strategy with dynamic bay reservations for container terminals," Bremen Computational Logistics Group Working Papers 4, University of Bremen, Computational Logistics Junior Research Group.
  10. Yu, Mingzhu & Qi, Xiangtong, 2013. "Storage space allocation models for inbound containers in an automatic container terminal," European Journal of Operational Research, Elsevier, vol. 226(1), pages 32-45.
  11. Baran Joanna & Górecka Aleksandra, 2015. "Seaport efficiency and productivity based on Data Envelopment Analysis and Malmquist Productivity Index," Logistics, Supply Chain, Sustainability and Global Challenges, Sciendo, vol. 6(1), pages 25-33, November.
  12. Wang, Xinchang & Meng, Qiang, 2019. "Optimal price decisions for joint ventures between port operators and shipping lines under the congestion effect," European Journal of Operational Research, Elsevier, vol. 273(2), pages 695-707.
  13. Juan P. Cavada & Cristián E. Cortés & Pablo A. Rey, 2023. "Comparing allocation and relocation policies at a logistics service container terminal: a discrete-event simulation approach," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(4), pages 1281-1316, December.
  14. Gharehgozli, Amir & Zaerpour, Nima, 2018. "Stacking outbound barge containers in an automated deep-sea terminal," European Journal of Operational Research, Elsevier, vol. 267(3), pages 977-995.
  15. de Melo da Silva, Marcos & Toulouse, Sophie & Wolfler Calvo, Roberto, 2018. "A new effective unified model for solving the Pre-marshalling and Block Relocation Problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 40-56.
  16. Jiang, Xin Jia & Jin, Jian Gang, 2017. "A branch-and-price method for integrated yard crane deployment and container allocation in transshipment yards," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 62-75.
  17. Mar-Ortiz, Julio & Castillo-García, Norberto & Gracia, María D., 2020. "A decision support system for a capacity management problem at a container terminal," International Journal of Production Economics, Elsevier, vol. 222(C).
  18. Woo, Youn Ju & Kim, Kap Hwan, 2011. "Estimating the space requirement for outbound container inventories in port container terminals," International Journal of Production Economics, Elsevier, vol. 133(1), pages 293-301, September.
  19. Zhang, Canrong & Wu, Tao & Kim, Kap Hwan & Miao, Lixin, 2014. "Conservative allocation models for outbound containers in container terminals," European Journal of Operational Research, Elsevier, vol. 238(1), pages 155-165.
  20. Yang, Lingyi & Ng, Tsan Sheng & Lee, Loo Hay, 2022. "A robust approximation for yard template optimization under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 160(C), pages 21-53.
  21. Lu Zhen & Ek Peng Chew & Loo Hay Lee, 2011. "An Integrated Model for Berth Template and Yard Template Planning in Transshipment Hubs," Transportation Science, INFORMS, vol. 45(4), pages 483-504, November.
  22. Jonas Ahmt & Jonas Skott Sigtenbjerggaard & Richard Martin Lusby & Jesper Larsen & David Ryan, 2016. "A new approach to the Container Positioning Problem," Flexible Services and Manufacturing Journal, Springer, vol. 28(4), pages 617-643, December.
  23. Pengfei Huang & Yongjin Wang & Pengfei Zhang, 2024. "Collaborative Optimization of Vessel Stowage Planning and Yard Pickup in Automated Container Terminals," Mathematics, MDPI, vol. 12(21), pages 1-15, October.
  24. Silva, Marcos de Melo da & Erdoğan, Güneş & Battarra, Maria & Strusevich, Vitaly, 2018. "The Block Retrieval Problem," European Journal of Operational Research, Elsevier, vol. 265(3), pages 931-950.
  25. Mehran Farzadmehr & Valentin Carlan & Thierry Vanelslander, 2023. "Contemporary challenges and AI solutions in port operations: applying Gale–Shapley algorithm to find best matches," Journal of Shipping and Trade, Springer, vol. 8(1), pages 1-44, December.
  26. Jin, Xuefeng & Park, Kang Tae & Kim, Kap Hwan, 2019. "Storage space sharing among container handling companies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 127(C), pages 111-131.
  27. Awad M. Aljuaid & Mayssa Koubâa & Mohamed Haykal Ammar & Karim Kammoun & Wafik Hachicha, 2024. "Mathematical Programming Formulations for the Berth Allocation Problems in Container Seaport Terminals," Logistics, MDPI, vol. 8(2), pages 1-17, May.
  28. Lee, Der-Horng & Jin, Jian Gang & Chen, Jiang Hang, 2012. "Terminal and yard allocation problem for a container transshipment hub with multiple terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(2), pages 516-528.
  29. Kim, Jindae & Ok, Chang-Soo & Kumara, Soundar & Yee, Shang-Tae, 2010. "A market-based approach for dynamic vehicle deployment planning using radio frequency identification (RFID) information," International Journal of Production Economics, Elsevier, vol. 128(1), pages 235-247, November.
  30. Gharehgozli, A.H. & Roy, D. & de Koster, M.B.M., 2014. "Sea Container Terminals," ERIM Report Series Research in Management ERS-2014-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
  31. Saurí, S. & Martín, E., 2011. "Space allocating strategies for improving import yard performance at marine terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1038-1057.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.