IDEAS home Printed from https://ideas.repec.org/r/eee/chsofr/v139y2020ics0960077920304859.html
   My bibliography  Save this item

COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Liu, Hui & Su, Bingbing & Guo, Min & Wang, Jingbei, 2024. "Exploring R&D network resilience under risk propagation: An organizational learning perspective," International Journal of Production Economics, Elsevier, vol. 273(C).
  2. Patrick Mellacher, 2022. "Endogenous viral mutations, evolutionary selection, and containment policy design," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(3), pages 801-825, July.
  3. González-Parra, Gilberto & Villanueva-Oller, Javier & Navarro-González, F.J. & Ceberio, Josu & Luebben, Giulia, 2024. "A network-based model to assess vaccination strategies for the COVID-19 pandemic by using Bayesian optimization," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
  4. Lopolito, Antonio & Caferra, Rocco & Nigri, Andrea & Morone, Piergiuseppe, 2024. "An evaluation of the impact of mitigation policies on health and the economy by managing social distancing during outbreaks," Evaluation and Program Planning, Elsevier, vol. 103(C).
  5. Almiala, Into & Aalto, Henrik & Kuikka, Vesa, 2023. "Influence spreading model for partial breakthrough effects on complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
  6. Eryarsoy, Enes & Shahmanzari, Masoud & Tanrisever, Fehmi, 2023. "Models for government intervention during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 69-83.
  7. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A., 2022. "Multifractal risk measures by Macroeconophysics perspective: The case of Brazilian inflation dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  8. Gabler, Janos & Raabe, Tobias & Röhrl, Klara & Gaudecker, Hans-Martin von, 2021. "Der Effekt von Homeoffice auf die Entwicklung der Covid-19-Pandemie in Deutschland," IZA Standpunkte 100, Institute of Labor Economics (IZA).
  9. Ali M. Al-Shaery & Bilal Hejase & Abdessamad Tridane & Norah S. Farooqi & Hamad Al Jassmi, 2021. "Agent-Based Modeling of the Hajj Rituals with the Possible Spread of COVID-19," Sustainability, MDPI, vol. 13(12), pages 1-13, June.
  10. Reyna-Lara, Adriana & Soriano-Paños, David & Arenas, Alex & Gómez-Gardeñes, Jesús, 2022. "The interconnection between independent reactive control policies drives the stringency of local containment," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
  11. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
  12. Huang, He & Xu, Yang & Xing, Jingli & Shi, Tianyu, 2023. "Social influence or risk perception? A mathematical model of self-protection against asymptomatic infection in multilayer network," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
  13. Gabler, Janos & Raabe, Tobias & Röhrl, Klara & Gaudecker, Hans-Martin von, 2020. "Die Bedeutung individuellen Verhaltens über den Jahreswechsel für die Weiterentwicklung der Covid-19-Pandemie in Deutschland," IZA Standpunkte 99, Institute of Labor Economics (IZA).
  14. Li, Jing & Liu, XiaoWen, 2024. "An agent-based simulation model for analyzing and optimizing omni-channel retailing operation decisions," Journal of Retailing and Consumer Services, Elsevier, vol. 79(C).
  15. Abiodun Olusola Omotayo & Peter Tshepiso Ndhlovu & Seleke Christopher Tshwene & Kehinde Oluseyi Olagunju & Adeyemi Oladapo Aremu, 2021. "Determinants of Household Income and Willingness to Pay for Indigenous Plants in North West Province, South Africa: A Two-Stage Heckman Approach," Sustainability, MDPI, vol. 13(10), pages 1-18, May.
  16. Nathan H. Schumaker & Sydney M. Watkins, 2021. "Adding Space to Disease Models: A Case Study with COVID-19 in Oregon, USA," Land, MDPI, vol. 10(4), pages 1-13, April.
  17. Barraza, Néstor Ruben & Pena, Gabriel & Moreno, Verónica, 2020. "A non-homogeneous Markov early epidemic growth dynamics model. Application to the SARS-CoV-2 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
  18. Shuangjin Li & Shuang Ma & Junyi Zhang, 2023. "Building a system dynamics model to analyze scenarios of COVID-19 policymaking in tourism-dependent developing countries: A case study of Cambodia," Tourism Economics, , vol. 29(2), pages 488-512, March.
  19. Alexey I. Borovkov & Marina V. Bolsunovskaya & Aleksei M. Gintciak, 2022. "Intelligent Data Analysis for Infection Spread Prediction," Sustainability, MDPI, vol. 14(4), pages 1-11, February.
  20. Yuan, Yiran & Li, Ning, 2022. "Optimal control and cost-effectiveness analysis for a COVID-19 model with individual protection awareness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
  21. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
  22. Dedi I. Inan & Ghassan Beydoun & Siti Hajar Othman & Biswajeet Pradhan & Simon Opper, 2022. "Developing Reusable COVID-19 Disaster Management Plans Using Agent-Based Analysis," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
  23. Liao, Haiyan & Holguín-Veras, José & Calderón, Oriana, 2023. "Comparative analysis of the performance of humanitarian logistic structures using agent-based simulation," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
  24. Xu, Yuan-Hao & Wang, Hao-Jie & Lu, Zhong-Wen & Hu, Mao-Bin, 2023. "Impact of awareness dissemination on epidemic reaction–diffusion in multiplex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 621(C).
  25. Wood, Aaron D. & Berry, Kevin, 2024. "COVID-19 transmission in a resource dependent community with heterogeneous populations: An agent-based modeling approach," Economics & Human Biology, Elsevier, vol. 52(C).
  26. Snellman, Jan E. & Barrio, Rafael A. & Kaski, Kimmo K. & Käpylä, Maarit J., 2022. "Modelling the interplay between epidemics and regional socio-economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
  27. Shen, Meng & Li, Xiang & Lu, Yujie & Cui, Qingbin & Wei, Yi-Ming, 2021. "Personality-based normative feedback intervention for energy conservation," Energy Economics, Elsevier, vol. 104(C).
  28. Mattia Pellegrino & Gianfranco Lombardo & Stefano Cagnoni & Agostino Poggi, 2022. "High-Performance Computing and ABMS for High-Resolution COVID-19 Spreading Simulation," Future Internet, MDPI, vol. 14(3), pages 1-23, March.
  29. Daniel K Sewell & Aaron Miller & for the CDC MInD-Healthcare Program, 2020. "Simulation-free estimation of an individual-based SEIR model for evaluating nonpharmaceutical interventions with an application to COVID-19 in the District of Columbia," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
  30. Rzeszutek Marcin & Szyszka Adam & Okoń Szymon, 2023. "Behavioral biases in corporate risk management and investment decisions during the COVID-19 pandemic in Poland," International Journal of Management and Economics, Warsaw School of Economics, Collegium of World Economy, vol. 59(1), pages 70-76, March.
  31. Jagoda Kaszowska-Mojsa & Przemyslaw Wlodarczyk, 2020. "To freeze or not to freeze? Epidemic prevention and control in the DSGE model with agent-based epidemic component," Lodz Economics Working Papers 3/2020, University of Lodz, Faculty of Economics and Sociology.
  32. Chiba, Asako, 2020. "Modeling the effects of contact-tracing apps on the spread of the coronavirus disease: mechanisms, conditions, and efficiency," MPRA Paper 103299, University Library of Munich, Germany.
  33. Bal'azs Pej'o & Gergely Bicz'ok, 2021. "Games in the Time of COVID-19: Promoting Mechanism Design for Pandemic Response," Papers 2106.12329, arXiv.org, revised Feb 2022.
  34. Patrick Urrutia & David Wren & Chrysafis Vogiatzis & Ruriko Yoshida, 2022. "SARS-CoV-2 Dissemination Using a Network of the US Counties," SN Operations Research Forum, Springer, vol. 3(2), pages 1-23, June.
  35. Đorđević, J. & Papić, I. & Šuvak, N., 2021. "A two diffusion stochastic model for the spread of the new corona virus SARS-CoV-2," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
  36. Zachariah Sinkala & Vajira Manathunga & Bichaka Fayissa, 2022. "An Epidemic Compartment Model for Economic Policy Directions for Managing Future Pandemic," Papers 2202.05374, arXiv.org.
  37. Rahman, Mati ur & Ahmad, Saeed & Matoog, R.T. & Alshehri, Nawal A. & Khan, Tahir, 2021. "Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator," Chaos, Solitons & Fractals, Elsevier, vol. 150(C).
  38. Mellacher, Patrick, 2020. "COVID-Town: An Integrated Economic-Epidemiological Agent-Based Model," MPRA Paper 103661, University Library of Munich, Germany.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.