IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v14y2022i3p83-d769430.html
   My bibliography  Save this article

High-Performance Computing and ABMS for High-Resolution COVID-19 Spreading Simulation

Author

Listed:
  • Mattia Pellegrino

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

  • Gianfranco Lombardo

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

  • Stefano Cagnoni

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

  • Agostino Poggi

    (Department of Engineering and Architecture, University of Parma, 43124 Parma, Italy)

Abstract

This paper presents an approach for the modeling and the simulation of the spreading of COVID-19 based on agent-based modeling and simulation (ABMS). Our goal is not only to support large-scale simulations but also to increase the simulation resolution. Moreover, we do not assume an underlying network of contacts, and the person-to-person contacts responsible for the spreading are modeled as a function of the geographical distance among the individuals. In particular, we defined a commuting mechanism combining radiation-based and gravity-based models and we exploited the commuting properties at different resolution levels (municipalities and provinces). Finally, we exploited the high-performance computing (HPC) facilities to simulate millions of concurrent agents, each mapping the individual’s behavior. To do such simulations, we developed a spreading simulator and validated it through the simulation of the spreading in two of the most populated Italian regions: Lombardy and Emilia-Romagna. Our main achievement consists of the effective modeling of 10 million of concurrent agents, each one mapping an individual behavior with a high-resolution in terms of social contacts, mobility and contribution to the virus spreading. Moreover, we analyzed the forecasting ability of our framework to predict the number of infections being initialized with only a few days of real data. We validated our model with the statistical data coming from the serological analysis conducted in Lombardy, and our model makes a smaller error than other state of the art models with a final root mean squared error equal to 56,009 simulating the entire first pandemic wave in spring 2020. On the other hand, for the Emilia-Romagna region, we simulated the second pandemic wave during autumn 2020, and we reached a final RMSE equal to 10,730.11.

Suggested Citation

  • Mattia Pellegrino & Gianfranco Lombardo & Stefano Cagnoni & Agostino Poggi, 2022. "High-Performance Computing and ABMS for High-Resolution COVID-19 Spreading Simulation," Future Internet, MDPI, vol. 14(3), pages 1-23, March.
  • Handle: RePEc:gam:jftint:v:14:y:2022:i:3:p:83-:d:769430
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/14/3/83/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/14/3/83/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mikola Lysenko & Roshan M. D'Souza, 2008. "A Framework for Megascale Agent Based Model Simulations on Graphics Processing Units," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 11(4), pages 1-10.
    2. Silva, Petrônio C.L. & Batista, Paulo V.C. & Lima, Hélder S. & Alves, Marcos A. & Guimarães, Frederico G. & Silva, Rodrigo C.P., 2020. "COVID-ABS: An agent-based model of COVID-19 epidemic to simulate health and economic effects of social distancing interventions," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    3. Hazhir Rahmandad & John Sterman, 2008. "Heterogeneity and Network Structure in the Dynamics of Diffusion: Comparing Agent-Based and Differential Equation Models," Management Science, INFORMS, vol. 54(5), pages 998-1014, May.
    4. Stefania Bandini & Sara Manzoni & Giuseppe Vizzari, 2009. "Agent Based Modeling and Simulation: An Informatics Perspective," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(4), pages 1-4.
    5. Philippe Mathieu & Yann Secq, 2012. "Environment updating and agent scheduling policies in agent-based simulators," Post-Print hal-00826400, HAL.
    6. Cynthia Nikolai & Gregory Madey, 2009. "Tools of the Trade: A Survey of Various Agent Based Modeling Platforms," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 12(2), pages 1-2.
    7. Fabian Lorig & Emil Johansson & Paul Davidsson, 2021. "Agent-Based Social Simulation of the Covid-19 Pandemic: A Systematic Review," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 24(3), pages 1-5.
    8. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    9. Muaz Niazi & Amir Hussain, 2011. "Agent-based computing from multi-agent systems to agent-based models: a visual survey," Scientometrics, Springer;Akadémiai Kiadó, vol. 89(2), pages 479-499, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hossein Sabzian & Mohammad Ali Shafia & Ali Maleki & Seyeed Mostapha Seyeed Hashemi & Ali Baghaei & Hossein Gharib, 2019. "Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners," Papers 1901.08932, arXiv.org.
    2. Lixin Zhou & Jie Lin & Yanfeng Li & Zhenyu Zhang, 2020. "Innovation Diffusion of Mobile Applications in Social Networks: A Multi-Agent System," Sustainability, MDPI, vol. 12(7), pages 1-17, April.
    3. Laciana, Carlos E. & Rovere, Santiago L. & Podestá, Guillermo P., 2013. "Exploring associations between micro-level models of innovation diffusion and emerging macro-level adoption patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(8), pages 1873-1884.
    4. Daniel K Sewell & Aaron Miller & for the CDC MInD-Healthcare Program, 2020. "Simulation-free estimation of an individual-based SEIR model for evaluating nonpharmaceutical interventions with an application to COVID-19 in the District of Columbia," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    5. Ngo-Hoang, Dai-Long, 2019. "A research paper of Hossein Sabzian (2019), Theories and Practice of Agent based Modeling: Some practical Implications for Economic Planners, ArXiv, 54p," AgriXiv xutyz, Center for Open Science.
    6. Lopolito, Antonio & Caferra, Rocco & Nigri, Andrea & Morone, Piergiuseppe, 2024. "An evaluation of the impact of mitigation policies on health and the economy by managing social distancing during outbreaks," Evaluation and Program Planning, Elsevier, vol. 103(C).
    7. Aura Reggiani, 2022. "The Architecture of Connectivity: A Key to Network Vulnerability, Complexity and Resilience," Networks and Spatial Economics, Springer, vol. 22(3), pages 415-437, September.
    8. Christophe Le Page & Nicolas Becu & Pierre Bommel & François Bousquet, 2012. "Participatory Agent-Based Simulation for Renewable Resource Management: The Role of the Cormas Simulation Platform to Nurture a Community of Practice," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 15(1), pages 1-10.
    9. Dimitris Kremmydas, 2012. "Agent based modeling for agricultural policy evaluation: A review," Working Papers 2012-3, Agricultural University of Athens, Department Of Agricultural Economics.
    10. Ping Xie, 2015. "Study of international anticancer research trends via co-word and document co-citation visualization analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(1), pages 611-622, October.
    11. Sardorbek Musayev & Jonathan Mellor & Tara Walsh & Emmanouil Anagnostou, 2021. "Development of an Agent-Based Model for Weather Forecast Information Exchange in Rural Area of Bahir Dar, Ethiopia," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    12. Ross Richardson & Matteo G. Richiardi & Michael Wolfson, 2015. "We ran one billion agents. Scaling in simulation models," LABORatorio R. Revelli Working Papers Series 142, LABORatorio R. Revelli, Centre for Employment Studies.
    13. Fattahi, Mohammad & Keyvanshokooh, Esmaeil & Kannan, Devika & Govindan, Kannan, 2023. "Resource planning strategies for healthcare systems during a pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 192-206.
    14. Chen, Yanguang, 2023. "Demonstration of duality of fractal gravity models by scaling symmetry," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    15. Lewe, J.-H. & Hivin, L.F. & Mavris, D.N., 2014. "A multi-paradigm approach to system dynamics modeling of intercity transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 188-202.
    16. Peres, Renana & Muller, Eitan & Mahajan, Vijay, 2010. "Innovation diffusion and new product growth models: A critical review and research directions," International Journal of Research in Marketing, Elsevier, vol. 27(2), pages 91-106.
    17. Moritz Kersting & Andreas Bossert & Leif Sörensen & Benjamin Wacker & Jan Chr. Schlüter, 2021. "Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-15, December.
    18. Ellinas, Christos & Allan, Neil & Johansson, Anders, 2016. "Project systemic risk: Application examples of a network model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 50-62.
    19. Wang, Richard & Ye, Zhongnan & Lu, Miaojia & Hsu, Shu-Chien, 2022. "Understanding post-pandemic work-from-home behaviours and community level energy reduction via agent-based modelling," Applied Energy, Elsevier, vol. 322(C).
    20. Tranos, Emmanouil & Incera, Andre Carrascal & Willis, George, 2022. "Using the web to predict regional trade flows: data extraction, modelling, and validation," OSF Preprints 9bu5z, Center for Open Science.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:14:y:2022:i:3:p:83-:d:769430. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.