IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v96y2012icp183-193.html
   My bibliography  Save this item

Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Saman Shahrokhi & Adel El-Shahat & Fatemeh Masoudinia & Foad H. Gandoman & Shady H. E. Abdel Aleem, 2021. "Sizing and Energy Management of Parking Lots of Electric Vehicles Based on Battery Storage with Wind Resources in Distribution Network," Energies, MDPI, vol. 14(20), pages 1-21, October.
  2. Bizon, Nicu, 2013. "Energy efficiency for the multiport power converters architectures of series and parallel hybrid power source type used in plug-in/V2G fuel cell vehicles," Applied Energy, Elsevier, vol. 102(C), pages 726-734.
  3. Yang, Jun & He, Lifu & Fu, Siyao, 2014. "An improved PSO-based charging strategy of electric vehicles in electrical distribution grid," Applied Energy, Elsevier, vol. 128(C), pages 82-92.
  4. Khardenavis, Amaiya & Hewage, Kasun & Perera, Piyaruwan & Shotorbani, Amin Mohammadpour & Sadiq, Rehan, 2021. "Mobile energy hub planning for complex urban networks: A robust optimization approach," Energy, Elsevier, vol. 235(C).
  5. Dallinger, David & Gerda, Schubert & Wietschel, Martin, 2013. "Integration of intermittent renewable power supply using grid-connected vehicles – A 2030 case study for California and Germany," Applied Energy, Elsevier, vol. 104(C), pages 666-682.
  6. Fotouhi Ghazvini, Mohammad Ali & Faria, Pedro & Ramos, Sergio & Morais, Hugo & Vale, Zita, 2015. "Incentive-based demand response programs designed by asset-light retail electricity providers for the day-ahead market," Energy, Elsevier, vol. 82(C), pages 786-799.
  7. Khayyam, Hamid & Abawajy, Jemal & Javadi, Bahman & Goscinski, Andrzej & Stojcevski, Alex & Bab-Hadiashar, Alireza, 2013. "Intelligent battery energy management and control for vehicle-to-grid via cloud computing network," Applied Energy, Elsevier, vol. 111(C), pages 971-981.
  8. Sousa, Tiago & Vale, Zita & Carvalho, Joao Paulo & Pinto, Tiago & Morais, Hugo, 2014. "A hybrid simulated annealing approach to handle energy resource management considering an intensive use of electric vehicles," Energy, Elsevier, vol. 67(C), pages 81-96.
  9. Salah, Florian & Ilg, Jens P. & Flath, Christoph M. & Basse, Hauke & Dinther, Clemens van, 2015. "Impact of electric vehicles on distribution substations: A Swiss case study," Applied Energy, Elsevier, vol. 137(C), pages 88-96.
  10. Arslan, Okan & Karasan, Oya Ekin, 2013. "Cost and emission impacts of virtual power plant formation in plug-in hybrid electric vehicle penetrated networks," Energy, Elsevier, vol. 60(C), pages 116-124.
  11. Paterakis, Nikolaos G. & Gibescu, Madeleine, 2016. "A methodology to generate power profiles of electric vehicle parking lots under different operational strategies," Applied Energy, Elsevier, vol. 173(C), pages 111-123.
  12. Moghaddam, Saeed Zolfaghari & Akbari, Tohid, 2018. "Network-constrained optimal bidding strategy of a plug-in electric vehicle aggregator: A stochastic/robust game theoretic approach," Energy, Elsevier, vol. 151(C), pages 478-489.
  13. He, Lifu & Yang, Jun & Yan, Jun & Tang, Yufei & He, Haibo, 2016. "A bi-layer optimization based temporal and spatial scheduling for large-scale electric vehicles," Applied Energy, Elsevier, vol. 168(C), pages 179-192.
  14. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
  15. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
  16. Faessler, B. & Kepplinger, P. & Petrasch, J., 2017. "Decentralized price-driven grid balancing via repurposed electric vehicle batteries," Energy, Elsevier, vol. 118(C), pages 446-455.
  17. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
  18. Pavić, Ivan & Capuder, Tomislav & Kuzle, Igor, 2016. "Low carbon technologies as providers of operational flexibility in future power systems," Applied Energy, Elsevier, vol. 168(C), pages 724-738.
  19. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying, 2016. "Integration of electric vehicles in smart grid: A review on vehicle to grid technologies and optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 720-732.
  20. Shin, Joohyun & Lee, Jay H. & Realff, Matthew J., 2017. "Operational planning and optimal sizing of microgrid considering multi-scale wind uncertainty," Applied Energy, Elsevier, vol. 195(C), pages 616-633.
  21. Wang, Yubo & Shi, Wenbo & Wang, Bin & Chu, Chi-Cheng & Gadh, Rajit, 2017. "Optimal operation of stationary and mobile batteries in distribution grids," Applied Energy, Elsevier, vol. 190(C), pages 1289-1301.
  22. Abbasi, Mohammad Hossein & Taki, Mehrdad & Rajabi, Amin & Li, Li & Zhang, Jiangfeng, 2019. "Coordinated operation of electric vehicle charging and wind power generation as a virtual power plant: A multi-stage risk constrained approach," Applied Energy, Elsevier, vol. 239(C), pages 1294-1307.
  23. Hu, Junjie & Morais, Hugo & Sousa, Tiago & Lind, Morten, 2016. "Electric vehicle fleet management in smart grids: A review of services, optimization and control aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1207-1226.
  24. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
  25. Amirioun, Mohammad Hassan & Kazemi, Ahad, 2014. "A new model based on optimal scheduling of combined energy exchange modes for aggregation of electric vehicles in a residential complex," Energy, Elsevier, vol. 69(C), pages 186-198.
  26. Shafie-khah, M. & Neyestani, N. & Damavandi, M.Y. & Gil, F.A.S. & Catalão, J.P.S., 2016. "Economic and technical aspects of plug-in electric vehicles in electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1168-1177.
  27. Tang, Jia & Wang, Dan & Wang, Xuyang & Jia, Hongjie & Wang, Chengshan & Huang, Renle & Yang, Zhanyong & Fan, Menghua, 2017. "Study on day-ahead optimal economic operation of active distribution networks based on Kriging model assisted particle swarm optimization with constraint handling techniques," Applied Energy, Elsevier, vol. 204(C), pages 143-162.
  28. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
  29. Capasso, Clemente & Veneri, Ottorino, 2015. "Experimental study of a DC charging station for full electric and plug in hybrid vehicles," Applied Energy, Elsevier, vol. 152(C), pages 131-142.
  30. Grimm, Veronika & Orlinskaya, Galina & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2021. "Optimal design of retailer-prosumer electricity tariffs using bilevel optimization," Omega, Elsevier, vol. 102(C).
  31. Wei Li & Jiekai Shi & Hanyun Zhou, 2024. "Coordinated Charging Scheduling Approach for Plug-In Hybrid Electric Vehicles Considering Multi-Objective Weighting Control in a Large-Scale Future Smart Grid," Energies, MDPI, vol. 17(13), pages 1-17, June.
  32. Sorrentino, Marco & Rizzo, Gianfranco & Sorrentino, Luca, 2014. "A study aimed at assessing the potential impact of vehicle electrification on grid infrastructure and road-traffic green house emissions," Applied Energy, Elsevier, vol. 120(C), pages 31-40.
  33. Soares, João & Borges, Nuno & Fotouhi Ghazvini, Mohammad Ali & Vale, Zita & de Moura Oliveira, P.B., 2016. "Scenario generation for electric vehicles' uncertain behavior in a smart city environment," Energy, Elsevier, vol. 111(C), pages 664-675.
  34. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2016. "Power demand control scenarios for smart grid applications with finite number of appliances," Applied Energy, Elsevier, vol. 162(C), pages 83-98.
  35. Jian, Linni & Zheng, Yanchong & Xiao, Xinping & Chan, C.C., 2015. "Optimal scheduling for vehicle-to-grid operation with stochastic connection of plug-in electric vehicles to smart grid," Applied Energy, Elsevier, vol. 146(C), pages 150-161.
  36. Jiao, Zihao & Ran, Lun & Zhang, Yanzi & Ren, Yaping, 2021. "Robust vehicle-to-grid power dispatching operations amid sociotechnical complexities," Applied Energy, Elsevier, vol. 281(C).
  37. van der Kam, Mart & van Sark, Wilfried, 2015. "Smart charging of electric vehicles with photovoltaic power and vehicle-to-grid technology in a microgrid; a case study," Applied Energy, Elsevier, vol. 152(C), pages 20-30.
  38. Najafi, Arsalan & Falaghi, Hamid & Contreras, Javier & Ramezani, Maryam, 2016. "Medium-term energy hub management subject to electricity price and wind uncertainty," Applied Energy, Elsevier, vol. 168(C), pages 418-433.
  39. Dan Wang & Qing’e Hu & Jia Tang & Hongjie Jia & Yun Li & Shuang Gao & Menghua Fan, 2017. "A Kriging Model Based Optimization of Active Distribution Networks Considering Loss Reduction and Voltage Profile Improvement," Energies, MDPI, vol. 10(12), pages 1-19, December.
  40. Zhou, Kaile & Cheng, Lexin & Wen, Lulu & Lu, Xinhui & Ding, Tao, 2020. "A coordinated charging scheduling method for electric vehicles considering different charging demands," Energy, Elsevier, vol. 213(C).
  41. Soares, João & Fotouhi Ghazvini, Mohammad Ali & Vale, Zita & de Moura Oliveira, P.B., 2016. "A multi-objective model for the day-ahead energy resource scheduling of a smart grid with high penetration of sensitive loads," Applied Energy, Elsevier, vol. 162(C), pages 1074-1088.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.