IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v88y2011i8p2663-2676.html
   My bibliography  Save this item

Investigation on the effect of injection system parameters on performance and emission characteristics of a twin cylinder compression ignition direct injection engine fuelled with pongamia biodiesel-diesel blend using response surface methodology

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Krishnamoorthi, M. & Malayalamurthi, R. & Sakthivel, R., 2019. "Optimization of compression ignition engine fueled with diesel - chaulmoogra oil - diethyl ether blend with engine parameters and exhaust gas recirculation," Renewable Energy, Elsevier, vol. 134(C), pages 579-602.
  2. Yusri, I.M. & Abdul Majeed, A.P.P. & Mamat, R. & Ghazali, M.F. & Awad, Omar I. & Azmi, W.H., 2018. "A review on the application of response surface method and artificial neural network in engine performance and exhaust emissions characteristics in alternative fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 665-686.
  3. Saxena, Vishal & Kumar, Niraj & Saxena, Vinod Kumar, 2019. "Multi-objective optimization of modified nanofluid fuel blends at different TiO2 nanoparticle concentration in diesel engine: Experimental assessment and modeling," Applied Energy, Elsevier, vol. 248(C), pages 330-353.
  4. Zareh, Parvaneh & Zare, Ali Asghar & Ghobadian, Barat, 2017. "Comparative assessment of performance and emission characteristics of castor, coconut and waste cooking based biodiesel as fuel in a diesel engine," Energy, Elsevier, vol. 139(C), pages 883-894.
  5. Khandal, S.V. & Banapurmath, N.R. & Gaitonde, V.N. & Hiremath, S.S., 2017. "Paradigm shift from mechanical direct injection diesel engines to advanced injection strategies of diesel homogeneous charge compression ignition (HCCI) engines- A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 369-384.
  6. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
  7. Mathad R. Indudhar & Nagaraj R. Banapurmath & K. Govinda Rajulu & Arun Y. Patil & Syed Javed & T. M. Yunus Khan, 2021. "Optimization of Piston Grooves, Bridges on Cylinder Head, and Inlet Valve Masking of Home-Fueled Diesel Engine by Response Surface Methodology," Sustainability, MDPI, vol. 13(20), pages 1-28, October.
  8. Goel, Varun & Kumar, Naresh & Singh, Paramvir, 2018. "Impact of modified parameters on diesel engine characteristics using biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2716-2729.
  9. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Engine characteristics analysis of chaulmoogra oil blends and corrosion analysis of injector nozzle using scanning electron microscopy/energy dispersive spectroscopy," Energy, Elsevier, vol. 165(PB), pages 1292-1319.
  10. Yunus khan, T.M. & Badruddin, Irfan Anjum & Badarudin, Ahmad & Banapurmath, N.R. & Salman Ahmed, N.J. & Quadir, G.A. & Al-Rashed, Abdullah A.A.A. & Khaleed, H.M.T. & Kamangar, Sarfaraz, 2015. "Effects of engine variables and heat transfer on the performance of biodiesel fueled IC engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 682-691.
  11. B Govinda Rao & Y Datta Bharadwaz & Chukka Virajitha & V Dharma Rao, 2018. "Effect of injection parameters on the performance and emission characteristics of a variable compression ratio diesel engine with plastic oil blends – An experimental study," Energy & Environment, , vol. 29(4), pages 492-510, June.
  12. Lešnik, Luka & Vajda, Blaž & Žunič, Zoran & Škerget, Leopold & Kegl, Breda, 2013. "The influence of biodiesel fuel on injection characteristics, diesel engine performance, and emission formation," Applied Energy, Elsevier, vol. 111(C), pages 558-570.
  13. Macor, A. & Avella, F. & Faedo, D., 2011. "Effects of 30% v/v biodiesel/diesel fuel blend on regulated and unregulated pollutant emissions from diesel engines," Applied Energy, Elsevier, vol. 88(12), pages 4989-5001.
  14. Sakthivel, R. & Ramesh, K. & Joseph John Marshal, S. & Sadasivuni, Kishor Kumar, 2019. "Prediction of performance and emission characteristics of diesel engine fuelled with waste biomass pyrolysis oil using response surface methodology," Renewable Energy, Elsevier, vol. 136(C), pages 91-103.
  15. Shameer, P. Mohamed & Ramesh, K., 2018. "Assessment on the consequences of injection timing and injection pressure on combustion characteristics of sustainable biodiesel fuelled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 45-61.
  16. Deb, Madhujit & Paul, Abhishek & Debroy, Durbadal & Sastry, G.R.K. & Panua, Raj Sekhar & Bose, P.K., 2015. "An experimental investigation of performance-emission trade off characteristics of a CI engine using hydrogen as dual fuel," Energy, Elsevier, vol. 85(C), pages 569-585.
  17. Marco Bietresato & Carlo Caligiuri & Anna Bolla & Massimiliano Renzi & Fabrizio Mazzetto, 2019. "Proposal of a Predictive Mixed Experimental- Numerical Approach for Assessing the Performance of Farm Tractor Engines Fuelled with Diesel- Biodiesel-Bioethanol Blends," Energies, MDPI, vol. 12(12), pages 1-45, June.
  18. Patel, Paresh D. & Lakdawala, Absar & Chourasia, Sajan & Patel, Rajesh N., 2016. "Bio fuels for compression ignition engine: A review on engine performance, emission and life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 24-43.
  19. Yaliwal, V.S. & Banapurmath, N.R. & Gaitonde, V.N. & Malipatil, M.D., 2019. "Simultaneous optimization of multiple operating engine parameters of a biodiesel-producer gas operated compression ignition (CI) engine coupled with hydrogen using response surface methodology," Renewable Energy, Elsevier, vol. 139(C), pages 944-959.
  20. S. M. Ashrafur Rahman & I. M. Rizwanul Fattah & Hwai Chyuan Ong & M. F. M. A. Zamri, 2021. "State-of-the-Art of Strategies to Reduce Exhaust Emissions from Diesel Engine Vehicles," Energies, MDPI, vol. 14(6), pages 1-24, March.
  21. Chang, Yu-Cheng & Lee, Wen-Jhy & Lin, Sheng-Lun & Wang, Lin-Chi, 2013. "Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines," Applied Energy, Elsevier, vol. 109(C), pages 182-191.
  22. Imtenan, S. & Ashrafur Rahman, S.M. & Masjuki, H.H. & Varman, M. & Kalam, M.A., 2015. "Effect of dynamic injection pressure on performance, emission and combustion characteristics of a compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1205-1211.
  23. Atmanli, Alpaslan & Ileri, Erol & Yilmaz, Nadir, 2016. "Optimization of diesel–butanol–vegetable oil blend ratios based on engine operating parameters," Energy, Elsevier, vol. 96(C), pages 569-580.
  24. Mohan, Balaji & Yang, Wenming & Chou, Siaw kiang, 2013. "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 664-676.
  25. Mohan, Balaji & Yang, Wenming & Raman, Vallinayagam & Sivasankaralingam, Vedharaj & Chou, Siaw Kiang, 2014. "Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing," Applied Energy, Elsevier, vol. 130(C), pages 450-457.
  26. Du, Wei & Zhang, Qiankun & Zhang, Zheng & Lou, Juejue & Bao, Wenhua, 2018. "Effects of injection pressure on ignition and combustion characteristics of impinging diesel spray," Applied Energy, Elsevier, vol. 226(C), pages 1163-1168.
  27. Bhowmik, Subrata & Paul, Abhishek & Panua, Rajsekhar & Ghosh, Subrata Kumar & Debroy, Durbadal, 2018. "Performance-exhaust emission prediction of diesosenol fueled diesel engine: An ANN coupled MORSM based optimization," Energy, Elsevier, vol. 153(C), pages 212-222.
  28. Krishnamoorthi, M. & Malayalamurthi, R., 2018. "Availability analysis, performance, combustion and emission behavior of bael oil - diesel - diethyl ether blends in a variable compression ratio diesel engine," Renewable Energy, Elsevier, vol. 119(C), pages 235-252.
  29. Prasad, G. Arun & Murugan, P.C. & Wincy, W. Beno & Sekhar, S. Joseph, 2021. "Response Surface Methodology to predict the performance and emission characteristics of gas-diesel engine working on producer gases of non-uniform calorific values," Energy, Elsevier, vol. 234(C).
  30. Mohamed Shameer, P. & Ramesh, K. & Sakthivel, R. & Purnachandran, R., 2017. "Effects of fuel injection parameters on emission characteristics of diesel engines operating on various biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1267-1281.
  31. Lan, Qi & Bai, Yun & Fan, Liyun & Gu, Yuanqi & Wen, Liming & Yang, Li, 2020. "Investigation on fuel injection quantity of low-speed diesel engine fuel system based on response surface prediction model," Energy, Elsevier, vol. 211(C).
  32. Sushrut S. Halewadimath & Nagaraj R. Banapurmath & V. S. Yaliwal & V. N. Gaitonde & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & Ashok M. Sajjan, 2023. "Experimental Investigations on Dual-Fuel Engine Fueled with Tertiary Renewable Fuel Combinations of Biodiesel and Producer—Hydrogen Gas Using Response Surface Methodology," Sustainability, MDPI, vol. 15(5), pages 1-18, March.
  33. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
  34. Dwivedi, Gaurav & Sharma, M.P., 2014. "Prospects of biodiesel from Pongamia in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 114-122.
  35. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
  36. Najafi, Gholamhassan & Ghobadian, Barat & Yusaf, Talal & Safieddin Ardebili, Seyed Mohammad & Mamat, Rizalman, 2015. "Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline–ethanol blended fuels using response surface methodology," Energy, Elsevier, vol. 90(P2), pages 1815-1829.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.