IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v88y2011i1p143-149.html
   My bibliography  Save this item

Control performance of a dedicated outdoor air system adopting liquid desiccant dehumidification

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lee, Seung Yeob & Lee, Su Kyoung & Chung, Jin Taek & Kang, Yong Tae, 2018. "Numerical evaluation of a compact generator design for steam driven H2O/LiBr absorption chiller application," Energy, Elsevier, vol. 152(C), pages 512-520.
  2. Abdel-Salam, Mohamed R.H. & Fauchoux, Melanie & Ge, Gaoming & Besant, Robert W. & Simonson, Carey J., 2014. "Expected energy and economic benefits, and environmental impacts for liquid-to-air membrane energy exchangers (LAMEEs) in HVAC systems: A review," Applied Energy, Elsevier, vol. 127(C), pages 202-218.
  3. Mohammad, Abdulrahman Th. & Mat, Sohif Bin & Sopian, K. & Al-abidi, Abduljalil A., 2016. "Review: Survey of the control strategy of liquid desiccant systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 250-258.
  4. Kim, Min-Hwi & Park, Jun-Seok & Jeong, Jae-Weon, 2013. "Energy saving potential of liquid desiccant in evaporative-cooling-assisted 100% outdoor air system," Energy, Elsevier, vol. 59(C), pages 726-736.
  5. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2015. "Experimental assessment of the energy performance of a hybrid desiccant cooling system and comparison with other air-conditioning technologies," Applied Energy, Elsevier, vol. 138(C), pages 533-545.
  6. Wang, Wentao & Liang, Chenjiyu & Li, Xianting, 2024. "Reasonable temperature differences for each stage and heat transfer between air and water in multi-stage air treatment system," Applied Energy, Elsevier, vol. 364(C).
  7. Wang, Xinli & Cai, Wenjian & Lu, Jiangang & Sun, Youxian & Ding, Xudong, 2013. "A hybrid dehumidifier model for real-time performance monitoring, control and optimization in liquid desiccant dehumidification system," Applied Energy, Elsevier, vol. 111(C), pages 449-455.
  8. Yang, Liu & Weng, Wenbing & Deng, Shiming, 2020. "A modeling study on a direct expansion based air conditioner having a two-sectioned cooling coil," Applied Energy, Elsevier, vol. 278(C).
  9. Das, Rajat Subhra & Jain, Sanjeev, 2013. "Experimental performance of indirect air–liquid membrane contactors for liquid desiccant cooling systems," Energy, Elsevier, vol. 57(C), pages 319-325.
  10. Giampieri, A. & Roy, S. & Shivaprasad, K.V. & Smallbone, A.J. & Roskilly, A.P., 2022. "An integrated smart thermo-chemical energy network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  11. Li, Xian & Liu, Shuai & Tan, Kok Kiong & Wang, Qing-Guo & Cai, Wen-Jian & Xie, Lihua, 2016. "Dynamic modeling of a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 180(C), pages 435-445.
  12. Wu, Qiong & Cai, WenJian & Shen, Suping & Wang, Xinli & Ren, Haoren, 2017. "A regulation strategy of working concentration in the dehumidifier of liquid desiccant air conditioner," Applied Energy, Elsevier, vol. 202(C), pages 648-661.
  13. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
  14. Jang-Hoon Shin & Joon-Young Park & Min-Suk Jo & Jae-Weon Jeong, 2018. "Impact of Heat Pump-Driven Liquid Desiccant Dehumidification on the Energy Performance of an Evaporative Cooling-Assisted Air Conditioning System," Energies, MDPI, vol. 11(2), pages 1-21, February.
  15. Chiang, Yuan-Ching & Chen, Chih-Hao & Chiang, Yi-Chin & Chen, Sih-Li, 2016. "Circulating inclined fluidized beds with application for desiccant dehumidification systems," Applied Energy, Elsevier, vol. 175(C), pages 199-211.
  16. Rafati Nasr, Mohammad & Kassai, Miklos & Ge, Gaoming & Simonson, Carey J., 2015. "Evaluation of defrosting methods for air-to-air heat/energy exchangers on energy consumption of ventilation," Applied Energy, Elsevier, vol. 151(C), pages 32-40.
  17. Zhang, Zi-Yang & Cao, Xiang & Yang, Zhi & Shao, Liang-Liang & Zhang, Chun-Lu, 2019. "Modeling and experimental investigation of an advanced direct-expansion outdoor air dehumidification system," Applied Energy, Elsevier, vol. 242(C), pages 1600-1612.
  18. Qi, Ronghui & Li, Dujuan & Zhang, Li-Zhi, 2017. "Performance investigation on polymeric electrolyte membrane-based electrochemical air dehumidification system," Applied Energy, Elsevier, vol. 208(C), pages 1174-1183.
  19. Yew Khoy Chuah & Jun Jie Yang, 2020. "A Integrated Dedicated Outdoor Air System to Optimize Energy Saving," Sustainability, MDPI, vol. 12(3), pages 1-12, February.
  20. Huang, Si-Min & Zhang, Li-Zhi, 2013. "Researches and trends in membrane-based liquid desiccant air dehumidification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 425-440.
  21. Mortazavi, Mehdi & Schmid, Michael & Moghaddam, Saeed, 2017. "Compact and efficient generator for low grade solar and waste heat driven absorption systems," Applied Energy, Elsevier, vol. 198(C), pages 173-179.
  22. Kim, Min-Hwi & Dong, Hae-Won & Park, Joon-Young & Jeong, Jae-Weon, 2016. "Primary energy savings in desiccant and evaporative cooling-assisted 100% outdoor air system combined with a fuel cell," Applied Energy, Elsevier, vol. 180(C), pages 446-456.
  23. Abdel-Salam, Ahmed H. & Simonson, Carey J., 2014. "Annual evaluation of energy, environmental and economic performances of a membrane liquid desiccant air conditioning system with/without ERV," Applied Energy, Elsevier, vol. 116(C), pages 134-148.
  24. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
  25. Wen, Tao & Lu, Lin & Li, Mai & Zhong, Hong, 2018. "Comparative study of the regeneration characteristics of LiCl and a new mixed liquid desiccant solution," Energy, Elsevier, vol. 163(C), pages 992-1005.
  26. Luo, Yimo & Yang, Hongxing & Lu, Lin, 2014. "Dynamic and microscopic simulation of the counter-current flow in a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 136(C), pages 1018-1025.
  27. Jiang, Yuliang & Wang, Xinli & Zhao, Hongxia & Wang, Lei & Yin, Xiaohong & Jia, Lei, 2020. "Dynamic modeling and economic model predictive control of a liquid desiccant air conditioning," Applied Energy, Elsevier, vol. 259(C).
  28. Min-Hwi Kim & Joon-Young Park & Jae-Weon Jeong, 2017. "Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System," Energies, MDPI, vol. 10(9), pages 1-19, September.
  29. Ge, Gaoming & Abdel-Salam, Mohamed R.H. & Besant, Robert W. & Simonson, Carey J., 2013. "Research and applications of liquid-to-air membrane energy exchangers in building HVAC systems at University of Saskatchewan: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 464-479.
  30. Angrisani, Giovanni & Roselli, Carlo & Sasso, Maurizio, 2013. "Effect of rotational speed on the performances of a desiccant wheel," Applied Energy, Elsevier, vol. 104(C), pages 268-275.
  31. Qi, Ronghui & Tian, Changqing & Shao, Shuangquan & Tang, Mingsheng & Lu, Lin, 2011. "Experimental investigation on performance improvement of electro-osmotic regeneration for solid desiccant," Applied Energy, Elsevier, vol. 88(8), pages 2816-2823, August.
  32. Ge, Gaoming & Xiao, Fu & Xu, Xinhua, 2011. "Model-based optimal control of a dedicated outdoor air-chilled ceiling system using liquid desiccant and membrane-based total heat recovery," Applied Energy, Elsevier, vol. 88(11), pages 4180-4190.
  33. Ou, Xianhua & Cai, Wenjian & He, Xiongxiong & Zhai, Deqing, 2018. "Experimental investigations on heat and mass transfer performances of a liquid desiccant cooling and dehumidification system," Applied Energy, Elsevier, vol. 220(C), pages 164-175.
  34. Liu, Xiaoli & Qu, Ming & Liu, Xiaobing & Wang, Lingshi, 2019. "Membrane-based liquid desiccant air dehumidification: A comprehensive review on materials, components, systems and performances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 444-466.
  35. Shukla, D.L. & Modi, K.V., 2022. "Influence of distinct input parameters on performance indices of dehumidifier, regenerator and on liquid desiccant-operated evaporative cooling system – A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  36. Zhang, Ning & Yin, Shao-You & Zhang, Li-Zhi, 2016. "Performance study of a heat pump driven and hollow fiber membrane-based two-stage liquid desiccant air dehumidification system," Applied Energy, Elsevier, vol. 179(C), pages 727-737.
  37. Das, Rajat Subhra & Jain, Sanjeev, 2015. "Simulation of potential standalone liquid desiccant cooling cycles," Energy, Elsevier, vol. 81(C), pages 652-661.
  38. Qi, Ronghui & Lu, Lin & Yang, Hongxing & Qin, Fei, 2013. "Investigation on wetted area and film thickness for falling film liquid desiccant regeneration system," Applied Energy, Elsevier, vol. 112(C), pages 93-101.
  39. Keniar, Khoudor & Ghali, Kamel & Ghaddar, Nesreen, 2015. "Study of solar regenerated membrane desiccant system to control humidity and decrease energy consumption in office spaces," Applied Energy, Elsevier, vol. 138(C), pages 121-132.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.