IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v88y2011i11p3999-4004.html
   My bibliography  Save this item

Power generation from organic substrate in batch and continuous flow microbial fuel cell operations

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Wang, Yong-Peng & Liu, Xian-Wei & Li, Wen-Wei & Li, Feng & Wang, Yun-Kun & Sheng, Guo-Ping & Zeng, Raymond J. & Yu, Han-Qing, 2012. "A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment," Applied Energy, Elsevier, vol. 98(C), pages 230-235.
  2. Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
  3. Tan, Weng Cheong & Saw, Lip Huat & Thiam, Hui San & Xuan, Jin & Cai, Zuansi & Yew, Ming Chian, 2018. "Overview of porous media/metal foam application in fuel cells and solar power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 181-197.
  4. Zeng, Qingyi & Bai, Jing & Li, Jinhua & Li, Linsen & Xia, Ligang & Zhou, Baoxue & Sun, Yugang, 2018. "Highly-stable and efficient photocatalytic fuel cell based on an epitaxial TiO2/WO3/W nanothorn photoanode and enhanced radical reactions for simultaneous electricity production and wastewater treatme," Applied Energy, Elsevier, vol. 220(C), pages 127-137.
  5. Anna Sekrecka-Belniak & Renata Toczyłowska-Mamińska, 2018. "Fungi-Based Microbial Fuel Cells," Energies, MDPI, vol. 11(10), pages 1-18, October.
  6. Mohanakrishna, G. & Krishna Mohan, S. & Venkata Mohan, S., 2012. "Carbon based nanotubes and nanopowder as impregnated electrode structures for enhanced power generation: Evaluation with real field wastewater," Applied Energy, Elsevier, vol. 95(C), pages 31-37.
  7. Qi, Zhao-qin & Fan, Shi-jie & Wang, Chin-tsan & Hu, Zi-yang, 2012. "Mixing effect of biometric flow channel in microbial fuel cells," Applied Energy, Elsevier, vol. 100(C), pages 106-111.
  8. Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
  9. Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
  10. Xu, Zhiheng & Liu, Yucheng & Williams, Isaiah & Li, Yan & Qian, Fengyu & Wang, Lei & Lei, Yu & Li, Baikun, 2017. "Flat enzyme-based lactate biofuel cell integrated with power management system: Towards long term in situ power supply for wearable sensors," Applied Energy, Elsevier, vol. 194(C), pages 71-80.
  11. Li, Yan & Williams, Isaiah & Xu, Zhiheng & Li, Baikun & Li, Baitao, 2016. "Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)," Applied Energy, Elsevier, vol. 163(C), pages 352-360.
  12. Chen, Yinguang & Luo, Jingyang & Yan, Yuanyuan & Feng, Leiyu, 2013. "Enhanced production of short-chain fatty acid by co-fermentation of waste activated sludge and kitchen waste under alkaline conditions and its application to microbial fuel cells," Applied Energy, Elsevier, vol. 102(C), pages 1197-1204.
  13. Ewing, Timothy & Ha, Phuc Thi & Beyenal, Haluk, 2017. "Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources," Applied Energy, Elsevier, vol. 192(C), pages 490-497.
  14. Birjandi, Noushin & Younesi, Habibollah & Ghoreyshi, Ali Asghar & Rahimnejad, Mostafa, 2020. "Enhanced medicinal herbs wastewater treatment in continuous flow bio-electro-Fenton operations along with power generation," Renewable Energy, Elsevier, vol. 155(C), pages 1079-1090.
  15. Antonopoulou, G. & Ntaikou, I. & Pastore, C. & di Bitonto, L. & Bebelis, S. & Lyberatos, G., 2019. "An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue," Applied Energy, Elsevier, vol. 242(C), pages 1064-1073.
  16. Lobato, Justo & González del Campo, Araceli & Fernández, Francisco J. & Cañizares, Pablo & Rodrigo, Manuel A., 2013. "Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae," Applied Energy, Elsevier, vol. 110(C), pages 220-226.
  17. Zinadini, S. & Zinatizadeh, A.A. & Rahimi, M. & Vatanpour, V. & Rahimi, Z., 2017. "High power generation and COD removal in a microbial fuel cell operated by a novel sulfonated PES/PES blend proton exchange membrane," Energy, Elsevier, vol. 125(C), pages 427-438.
  18. Kumar, Vikash & Nandy, Arpita & Das, Suparna & Salahuddin, M. & Kundu, Patit P., 2015. "Performance assessment of partially sulfonated PVdF-co-HFP as polymer electrolyte membranes in single chambered microbial fuel cells," Applied Energy, Elsevier, vol. 137(C), pages 310-321.
  19. Khan, M.Z. & Nizami, A.S. & Rehan, M. & Ouda, O.K.M. & Sultana, S. & Ismail, I.M. & Shahzad, K., 2017. "Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 185(P1), pages 410-420.
  20. Rui N. L. Carvalho & Luisa L. Monteiro & Silvia A. Sousa & Sudarsu V. Ramanaiah & Jorge H. Leitão & Cristina M. Cordas & Luis P. Fonseca, 2023. "Design and Optimization of Microbial Fuel Cells and Evaluation of a New Air-Breathing Cathode Based on Carbon Felt Modified with a Hydrogel—Ion Jelly ®," Energies, MDPI, vol. 16(10), pages 1-24, May.
  21. Gonzalez del Campo, A. & Lobato, J. & Cañizares, P. & Rodrigo, M.A. & Fernandez Morales, F.J., 2013. "Short-term effects of temperature and COD in a microbial fuel cell," Applied Energy, Elsevier, vol. 101(C), pages 213-217.
  22. Wu, Chao & Liu, Xian-Wei & Li, Wen-Wei & Sheng, Guo-Ping & Zang, Guo-Long & Cheng, Yuan-Yuan & Shen, Nan & Yang, Yi-Pei & Yu, Han-Qing, 2012. "A white-rot fungus is used as a biocathode to improve electricity production of a microbial fuel cell," Applied Energy, Elsevier, vol. 98(C), pages 594-596.
  23. Slate, Anthony J. & Whitehead, Kathryn A. & Brownson, Dale A.C. & Banks, Craig E., 2019. "Microbial fuel cells: An overview of current technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 60-81.
  24. Li, Weiqing & Zhang, Shaohui & Chen, Gang & Hua, Yumei, 2014. "Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite," Applied Energy, Elsevier, vol. 126(C), pages 136-141.
  25. J. Sadhik Basha & Tahereh Jafary & Ranjit Vasudevan & Jahanzeb Khan Bahadur & Muna Al Ajmi & Aadil Al Neyadi & Manzoore Elahi M. Soudagar & MA Mujtaba & Abrar Hussain & Waqar Ahmed & Kiran Shahapurkar, 2021. "Potential of Utilization of Renewable Energy Technologies in Gulf Countries," Sustainability, MDPI, vol. 13(18), pages 1-29, September.
  26. Wang, Yun-Hai & Wang, Bai-Shi & Pan, Bin & Chen, Qing-Yun & Yan, Wei, 2013. "Electricity production from a bio-electrochemical cell for silver recovery in alkaline media," Applied Energy, Elsevier, vol. 112(C), pages 1337-1341.
  27. Khaya Pearlman Shabangu & Babatunde Femi Bakare & Joseph Kapuku Bwapwa, 2022. "Microbial Fuel Cells for Electrical Energy: Outlook on Scaling-Up and Application Possibilities towards South African Energy Grid," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
  28. Liu, Xianhua & Hao, Miaoqing & Feng, Mengnan & Zhang, Lin & Zhao, Yong & Du, Xiwen & Wang, Guangyi, 2013. "A One-compartment direct glucose alkaline fuel cell with methyl viologen as electron mediator," Applied Energy, Elsevier, vol. 106(C), pages 176-183.
  29. Liu, Shu-Hui & Lai, Yu-Chuan & Lin, Chi-Wen, 2019. "Enhancement of power generation by microbial fuel cells in treating toluene-contaminated groundwater: Developments of composite anodes with various compositions," Applied Energy, Elsevier, vol. 233, pages 922-929.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.