IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v185y2017ip1p410-420.html
   My bibliography  Save this article

Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia

Author

Listed:
  • Khan, M.Z.
  • Nizami, A.S.
  • Rehan, M.
  • Ouda, O.K.M.
  • Sultana, S.
  • Ismail, I.M.
  • Shahzad, K.

Abstract

This paper reviews the status of microbial electrolysis cells (MEC) as a mean for hydrogen (H2) production and urban wastewater treatment method. A case study of the Kingdom of Saudi Arabia (KSA) under MEC concept was developed. KSA is the world’s third largest per capita water user country with no lakes and rivers. Every year, around 1.17 and 0.38 billionm3 of domestic and industrial wastewater is generated respectively. The KSA government is seeking sustainable solutions for wastewater treatment and waste-to-energy (WTE) production to bridge the ever increasing water and energy demand-supply gap. However, there is no WTE facility exists to convert the wastewater into energy. Moreover, the potential of wastewater is not examined as an energy recovery substrate. This study, for the first time, estimated that a total electricity of 434 MWe can be produced in 2015 from the KSA’s wastewater if MEC technology is employed. Similarly, an estimated total electricity of 612 and 767 MWe can be produced for the years 2025 and 2035 from the domestic and industrial wastewater by using MEC technology. A surplus electricity of 508 and 637 MWe for the years 2025 and 2035 respectively can be added to the national grid after fulfilling the energy requirement of MEC wastewater treatment plants. Collectively, MEC will contribute 20.4% and 25.6% share of the KSA government’s WTE target of 3GW in 2025 and 2035 respectively. A number of challenges in MEC such as ohmic and concentration losses, saturation kinetics and competing reactions that lower the H2 production are discussed with their potential solutions including, the improvements in MEC design and the use of appropriate electrolytes, antibiotics and air or oxygen.

Suggested Citation

  • Khan, M.Z. & Nizami, A.S. & Rehan, M. & Ouda, O.K.M. & Sultana, S. & Ismail, I.M. & Shahzad, K., 2017. "Microbial electrolysis cells for hydrogen production and urban wastewater treatment: A case study of Saudi Arabia," Applied Energy, Elsevier, vol. 185(P1), pages 410-420.
  • Handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:410-420
    DOI: 10.1016/j.apenergy.2016.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916315902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asam, Zaki-ul-Zaman & Poulsen, Tjalfe Gorm & Nizami, Abdul-Sattar & Rafique, Rashad & Kiely, Ger & Murphy, Jerry D., 2011. "How can we improve biomethane production per unit of feedstock in biogas plants?," Applied Energy, Elsevier, vol. 88(6), pages 2013-2018, June.
    2. Chen, Yingwen & Xu, Yuan & Chen, Liuliu & Li, Peiwen & Zhu, Shemin & Shen, Shubao, 2015. "Microbial electrolysis cells with polyaniline/multi-walled carbon nanotube-modified biocathodes," Energy, Elsevier, vol. 88(C), pages 377-384.
    3. Oliot, Manon & Galier, Sylvain & Roux de Balmann, Hélène & Bergel, Alain, 2016. "Ion transport in microbial fuel cells: Key roles, theory and critical review," Applied Energy, Elsevier, vol. 183(C), pages 1682-1704.
    4. Cai, Weiwei & Zhang, Zhaojing & Ren, Ge & Shen, Qiuxuan & Hou, Yanan & Ma, Anzhou & Deng, Ye & Wang, Aijie & Liu, Wenzong, 2016. "Quorum sensing alters the microbial community of electrode-respiring bacteria and hydrogen scavengers toward improving hydrogen yield in microbial electrolysis cells," Applied Energy, Elsevier, vol. 183(C), pages 1133-1141.
    5. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    6. Ouda, O.K.M. & Raza, S.A. & Nizami, A.S. & Rehan, M. & Al-Waked, R. & Korres, N.E., 2016. "Waste to energy potential: A case study of Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 328-340.
    7. Li, Weiqing & Zhang, Shaohui & Chen, Gang & Hua, Yumei, 2014. "Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite," Applied Energy, Elsevier, vol. 126(C), pages 136-141.
    8. Wang, Mingyong & Wang, Zhi & Gong, Xuzhong & Guo, Zhancheng, 2014. "The intensification technologies to water electrolysis for hydrogen production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 573-588.
    9. Nizami, A.S. & Orozco, A. & Groom, E. & Dieterich, B. & Murphy, J.D., 2012. "How much gas can we get from grass?," Applied Energy, Elsevier, vol. 92(C), pages 783-790.
    10. Xiaocheng Jiang & Jinsong Hu & Emily R. Petersen & Lisa A. Fitzgerald & Charles S. Jackan & Alexander M. Lieber & Bradley R. Ringeisen & Charles M. Lieber & Justin C. Biffinger, 2013. "Probing single- to multi-cell level charge transport in Geobacter sulfurreducens DL-1," Nature Communications, Nature, vol. 4(1), pages 1-6, December.
    11. Escapa, A. & Mateos, R. & Martínez, E.J. & Blanes, J., 2016. "Microbial electrolysis cells: An emerging technology for wastewater treatment and energy recovery. From laboratory to pilot plant and beyond," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 942-956.
    12. Rahimnejad, Mostafa & Ghoreyshi, Ali Asghar & Najafpour, Ghasem & Jafary, Tahereh, 2011. "Power generation from organic substrate in batch and continuous flow microbial fuel cell operations," Applied Energy, Elsevier, vol. 88(11), pages 3999-4004.
    13. Jiang, Yong & Liang, Peng & Zhang, Changyong & Bian, Yanhong & Sun, Xueliang & Zhang, Helan & Yang, Xufei & Zhao, Feng & Huang, Xia, 2016. "Periodic polarity reversal for stabilizing the pH in two-chamber microbial electrolysis cells," Applied Energy, Elsevier, vol. 165(C), pages 670-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luo, Shuai & Jain, Akshay & Aguilera, Anibal & He, Zhen, 2017. "Effective control of biohythane composition through operational strategies in an innovative microbial electrolysis cell," Applied Energy, Elsevier, vol. 206(C), pages 879-886.
    2. Shen, Ruixia & Jiang, Yong & Ge, Zheng & Lu, Jianwen & Zhang, Yuanhui & Liu, Zhidan & Ren, Zhiyong Jason, 2018. "Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation," Applied Energy, Elsevier, vol. 212(C), pages 509-515.
    3. Hassan S. Alqahtani, 2024. "Lower-Carbon Hydrogen Production from Wastewater: A Comprehensive Review," Sustainability, MDPI, vol. 16(19), pages 1-22, October.
    4. Kong, Fanying & Ren, Hong-Yu & Pavlostathis, Spyros G. & Nan, Jun & Ren, Nan-Qi & Wang, Aijie, 2020. "Overview of value-added products bioelectrosynthesized from waste materials in microbial electrosynthesis systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    5. Liang, Dandan & Zhang, Lijuan & He, Weihua & Li, Chao & Liu, Junfeng & Liu, Shaoqin & Lee, Hyung-Sool & Feng, Yujie, 2020. "Efficient hydrogen recovery with CoP-NF as cathode in microbial electrolysis cells," Applied Energy, Elsevier, vol. 264(C).
    6. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    7. Richard Ochieng & Alemayehu Gebremedhin & Shiplu Sarker, 2022. "Integration of Waste to Bioenergy Conversion Systems: A Critical Review," Energies, MDPI, vol. 15(7), pages 1-22, April.
    8. Birol Kılkış & Şiir Kılkış, 2018. "Hydrogen Economy Model for Nearly Net-Zero Cities with Exergy Rationale and Energy-Water Nexus," Energies, MDPI, vol. 11(5), pages 1-33, May.
    9. Wang, Bin & Wang, Shuang-Fei & Lam, Su Shiung & Sonne, Christian & Yuan, Tong-Qi & Song, Guo-Yong & Sun, Run-Cang, 2020. "A review on production of lignin-based flocculants: Sustainable feedstock and low carbon footprint applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    10. Yang, Hao & Zu, Xihong & Lin, Jinxin & Wu, Mengnuo & Chen, Liheng & Jiang, Xiaobin & Xie, Zixin & Ye, Tongxin & Yang, Dongjie & Qiu, Xueqing, 2023. "Direct and efficient conversion of antibiotic wastewater into electricity by redox flow fuel cell based on photothermal synergistic effect," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rousseau, Raphaël & Etcheverry, Luc & Roubaud, Emma & Basséguy, Régine & Délia, Marie-Line & Bergel, Alain, 2020. "Microbial electrolysis cell (MEC): Strengths, weaknesses and research needs from electrochemical engineering standpoint," Applied Energy, Elsevier, vol. 257(C).
    2. Shen, Ruixia & Jiang, Yong & Ge, Zheng & Lu, Jianwen & Zhang, Yuanhui & Liu, Zhidan & Ren, Zhiyong Jason, 2018. "Microbial electrolysis treatment of post-hydrothermal liquefaction wastewater with hydrogen generation," Applied Energy, Elsevier, vol. 212(C), pages 509-515.
    3. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    4. Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
    5. Antonopoulou, G. & Ntaikou, I. & Pastore, C. & di Bitonto, L. & Bebelis, S. & Lyberatos, G., 2019. "An overall perspective for the energetic valorization of household food waste using microbial fuel cell technology of its extract, coupled with anaerobic digestion of the solid residue," Applied Energy, Elsevier, vol. 242(C), pages 1064-1073.
    6. Nizami, A.S. & Shahzad, K. & Rehan, M. & Ouda, O.K.M. & Khan, M.Z. & Ismail, I.M.I. & Almeelbi, T. & Basahi, J.M. & Demirbas, A., 2017. "Developing waste biorefinery in Makkah: A way forward to convert urban waste into renewable energy," Applied Energy, Elsevier, vol. 186(P2), pages 189-196.
    7. Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
    8. Jiang, Yong & Yang, Xufei & Liang, Peng & Liu, Panpan & Huang, Xia, 2018. "Microbial fuel cell sensors for water quality early warning systems: Fundamentals, signal resolution, optimization and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 292-305.
    9. Li, Yan & Williams, Isaiah & Xu, Zhiheng & Li, Baikun & Li, Baitao, 2016. "Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs)," Applied Energy, Elsevier, vol. 163(C), pages 352-360.
    10. Browne, James D. & Murphy, Jerry D., 2013. "Assessment of the resource associated with biomethane from food waste," Applied Energy, Elsevier, vol. 104(C), pages 170-177.
    11. Liu, Panpan & Liang, Peng & Jiang, Yong & Hao, Wen & Miao, Bo & Wang, Donglin & Huang, Xia, 2018. "Stimulated electron transfer inside electroactive biofilm by magnetite for increased performance microbial fuel cell," Applied Energy, Elsevier, vol. 216(C), pages 382-388.
    12. Thamsiriroj, T. & Nizami, A.S. & Murphy, J.D., 2012. "Why does mono-digestion of grass silage fail in long term operation?," Applied Energy, Elsevier, vol. 95(C), pages 64-76.
    13. Wang, Chin-Tsan & Lee, Yao-Cheng & Ou, Yun-Ting & Yang, Yung-Chin & Chong, Wen-Tong & Sangeetha, Thangavel & Yan, Wei-Mon, 2017. "Exposing effect of comb-type cathode electrode on the performance of sediment microbial fuel cells," Applied Energy, Elsevier, vol. 204(C), pages 620-625.
    14. Wang, Zhongli & Zhang, Baogang & Jiang, Yufeng & Li, Yunlong & He, Chao, 2018. "Spontaneous thallium (I) oxidation with electricity generation in single-chamber microbial fuel cells," Applied Energy, Elsevier, vol. 209(C), pages 33-42.
    15. Toczyłowska-Mamińska, Renata & Pielech-Przybylska, Katarzyna & Sekrecka-Belniak, Anna & Dziekońska-Kubczak, Urszula, 2020. "Stimulation of electricity production in microbial fuel cells via regulation of syntrophic consortium development," Applied Energy, Elsevier, vol. 271(C).
    16. Leicester, Daniel & Amezaga, Jaime & Heidrich, Elizabeth, 2020. "Is bioelectrochemical energy production from wastewater a reality? Identifying and standardising the progress made in scaling up microbial electrolysis cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    17. Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
    18. Han, He-Xing & Shi, Chen & Yuan, Li & Sheng, Guo-Ping, 2017. "Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell," Applied Energy, Elsevier, vol. 204(C), pages 382-389.
    19. Wang, Chin-Tsan & Huang, Yan-Sian & Sangeetha, Thangavel & Yan, Wei-Mon, 2018. "Assessment of recirculation batch mode operation in bufferless Bio-cathode microbial Fuel Cells (MFCs)," Applied Energy, Elsevier, vol. 209(C), pages 120-126.
    20. Ewing, Timothy & Ha, Phuc Thi & Beyenal, Haluk, 2017. "Evaluation of long-term performance of sediment microbial fuel cells and the role of natural resources," Applied Energy, Elsevier, vol. 192(C), pages 490-497.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:185:y:2017:i:p1:p:410-420. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.