IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v87y2010i8p2712-2727.html
   My bibliography  Save this item

Optimum sizing of wind-battery systems incorporating resource uncertainty

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Pascasio, Jethro Daniel A. & Esparcia, Eugene A. & Castro, Michael T. & Ocon, Joey D., 2021. "Comparative assessment of solar photovoltaic-wind hybrid energy systems: A case for Philippine off-grid islands," Renewable Energy, Elsevier, vol. 179(C), pages 1589-1607.
  2. Lujano-Rojas, Juan M. & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2012. "Optimal sizing of small wind/battery systems considering the DC bus voltage stability effect on energy capture, wind speed variability, and load uncertainty," Applied Energy, Elsevier, vol. 93(C), pages 404-412.
  3. Hu, Jing & Li, Yu & Wörman, Anders & Zhang, Bingyao & Ding, Wei & Zhou, Huicheng, 2023. "Reducing energy storage demand by spatial-temporal coordination of multienergy systems," Applied Energy, Elsevier, vol. 329(C).
  4. Lee, Jui-Yuan & Aviso, Kathleen B. & Tan, Raymond R., 2019. "Multi-objective optimisation of hybrid power systems under uncertainties," Energy, Elsevier, vol. 175(C), pages 1271-1282.
  5. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
  6. Miranda, Á.G. & Hong, C.W., 2013. "Integrated modeling for the cyclic behavior of high power Li-ion batteries under extended operating conditions," Applied Energy, Elsevier, vol. 111(C), pages 681-689.
  7. Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
  8. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
  9. Gabra, Samuel & Miles, John & Scott, Stuart A., 2019. "Techno-economic analysis of stand-alone wind micro-grids, compared with PV and diesel in Africa," Renewable Energy, Elsevier, vol. 143(C), pages 1928-1938.
  10. Gao, Qiang & Yuan, Rui & Ertugrul, Nesimi & Ding, Boyin & Hayward, Jennifer A. & Li, Ye, 2023. "Analysis of energy variability and costs for offshore wind and hybrid power unit with equivalent energy storage system," Applied Energy, Elsevier, vol. 342(C).
  11. Sharafi, Masoud & ElMekkawy, Tarek Y., 2015. "Stochastic optimization of hybrid renewable energy systems using sampling average method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1668-1679.
  12. Kocaman, Ayse Selin & Modi, Vijay, 2017. "Value of pumped hydro storage in a hybrid energy generation and allocation system," Applied Energy, Elsevier, vol. 205(C), pages 1202-1215.
  13. Mercangöz, Mehmet & Hemrle, Jaroslav & Kaufmann, Lilian & Z’Graggen, Andreas & Ohler, Christian, 2012. "Electrothermal energy storage with transcritical CO2 cycles," Energy, Elsevier, vol. 45(1), pages 407-415.
  14. Meschede, Henning & Dunkelberg, Heiko & Stöhr, Fabian & Peesel, Ron-Hendrik & Hesselbach, Jens, 2017. "Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods," Energy, Elsevier, vol. 128(C), pages 86-100.
  15. Berrada, Asmae & Loudiyi, Khalid, 2016. "Operation, sizing, and economic evaluation of storage for solar and wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1117-1129.
  16. Chennaif, Mohammed & Maaouane, Mohamed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2022. "Tri-objective techno-economic sizing optimization of Off-grid and On-grid renewable energy systems using Electric system Cascade Extended analysis and system Advisor Model," Applied Energy, Elsevier, vol. 305(C).
  17. Daghi, Majid & Sedghi, Mahdi & Ahmadian, Ali & Aliakbar-Golkar, Masoud, 2016. "Factor analysis based optimal storage planning in active distribution network considering different battery technologies," Applied Energy, Elsevier, vol. 183(C), pages 456-469.
  18. Qihui Yu & Li Tian & Xiaodong Li & Xin Tan, 2022. "Compressed Air Energy Storage Capacity Configuration and Economic Evaluation Considering the Uncertainty of Wind Energy," Energies, MDPI, vol. 15(13), pages 1-30, June.
  19. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
  20. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
  21. Kosai, Shoki & Cravioto, Jordi, 2020. "Resilience of standalone hybrid renewable energy systems: The role of storage capacity," Energy, Elsevier, vol. 196(C).
  22. Elma, Onur & Selamogullari, Ugur Savas, 2012. "A comparative sizing analysis of a renewable energy supplied stand-alone house considering both demand side and source side dynamics," Applied Energy, Elsevier, vol. 96(C), pages 400-408.
  23. Purvins, Arturs & Zubaryeva, Alyona & Llorente, Maria & Tzimas, Evangelos & Mercier, Arnaud, 2011. "Challenges and options for a large wind power uptake by the European electricity system," Applied Energy, Elsevier, vol. 88(5), pages 1461-1469, May.
  24. Mardan, Nawzad & Klahr, Roger, 2012. "Combining optimisation and simulation in an energy systems analysis of a Swedish iron foundry," Energy, Elsevier, vol. 44(1), pages 410-419.
  25. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
  26. Kaldellis, J.K. & Zafirakis, D. & Stavropoulou, V. & Kaldelli, El., 2012. "Optimum wind- and photovoltaic-based stand-alone systems on the basis of life cycle energy analysis," Energy Policy, Elsevier, vol. 50(C), pages 345-357.
  27. Abdullah, M.A. & Agalgaonkar, A.P. & Muttaqi, K.M., 2014. "Assessment of energy supply and continuity of service in distribution network with renewable distributed generation," Applied Energy, Elsevier, vol. 113(C), pages 1015-1026.
  28. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
  29. Raza, Syed Shabbar & Janajreh, Isam & Ghenai, Chaouki, 2014. "Sustainability index approach as a selection criteria for energy storage system of an intermittent renewable energy source," Applied Energy, Elsevier, vol. 136(C), pages 909-920.
  30. Hung, Tzu-Chieh & Chong, John & Chan, Kuei-Yuan, 2017. "Reducing uncertainty accumulation in wind-integrated electrical grid," Energy, Elsevier, vol. 141(C), pages 1072-1083.
  31. Theo, Wai Lip & Lim, Jeng Shiun & Wan Alwi, Sharifah Rafidah & Mohammad Rozali, Nor Erniza & Ho, Wai Shin & Abdul-Manan, Zainuddin, 2016. "An MILP model for cost-optimal planning of an on-grid hybrid power system for an eco-industrial park," Energy, Elsevier, vol. 116(P2), pages 1423-1441.
  32. Hao Yu & Yibo Wang & Chuang Liu & Shunjiang Wang & Chunyang Hao & Jian Xiong, 2024. "Optimization and Scheduling Method for Power Systems Considering Wind Power Forward/Reverse Peaking Scenarios," Energies, MDPI, vol. 17(5), pages 1-18, March.
  33. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
  34. Wei Wang & Chengxiong Mao & Jiming Lu & Dan Wang, 2013. "An Energy Storage System Sizing Method for Wind Power Integration," Energies, MDPI, vol. 6(7), pages 1-13, July.
  35. Mansour Alramlawi & Pu Li, 2024. "Chance-Constrained Optimal Design of PV-Based Microgrids under Grid Blackout Uncertainties," Energies, MDPI, vol. 17(8), pages 1-15, April.
  36. Wu, Zhou & Tazvinga, Henerica & Xia, Xiaohua, 2015. "Demand side management of photovoltaic-battery hybrid system," Applied Energy, Elsevier, vol. 148(C), pages 294-304.
  37. Zhu, Wenhua H. & Zhu, Ying & Davis, Zenda & Tatarchuk, Bruce J., 2013. "Energy efficiency and capacity retention of Ni–MH batteries for storage applications," Applied Energy, Elsevier, vol. 106(C), pages 307-313.
  38. Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Bernal-Agustín, José L., 2014. "Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems," Applied Energy, Elsevier, vol. 115(C), pages 242-253.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.