IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v6y2013i7p3392-3404d27099.html
   My bibliography  Save this article

An Energy Storage System Sizing Method for Wind Power Integration

Author

Listed:
  • Wei Wang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hua Zhong University of Science and Technology, Wuhan 430074, China)

  • Chengxiong Mao

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hua Zhong University of Science and Technology, Wuhan 430074, China)

  • Jiming Lu

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hua Zhong University of Science and Technology, Wuhan 430074, China)

  • Dan Wang

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Hua Zhong University of Science and Technology, Wuhan 430074, China)

Abstract

Combining an energy storage system (ESS) with a wind farm is an effective way to increase the penetration rate of wind power. ESS sizing is an important part in wind farm planning nowadays. In this paper, a basic method for determining the optimal capacity of an ESS integrated with a wind power generator to meet the requirements of grid integration is presented. With the proposed method, the necessary ESS capacity which can provide the best benefits between the regulation effects and energy storage size was calculated. The segmentation method and automatic segmentation method are proposed to improve the performance of the basic method. Further work on expanding the method to determine the necessary capacity of ESS for real-time control is studied. The time window method is used to enable the proposed method available under all working conditions. The simulation results verify the effectiveness of the proposed method.

Suggested Citation

  • Wei Wang & Chengxiong Mao & Jiming Lu & Dan Wang, 2013. "An Energy Storage System Sizing Method for Wind Power Integration," Energies, MDPI, vol. 6(7), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:6:y:2013:i:7:p:3392-3404:d:27099
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/6/7/3392/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/6/7/3392/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roy, Anindita & Kedare, Shireesh B. & Bandyopadhyay, Santanu, 2010. "Optimum sizing of wind-battery systems incorporating resource uncertainty," Applied Energy, Elsevier, vol. 87(8), pages 2712-2727, August.
    2. Ekren, Orhan & Ekren, Banu Yetkin, 2008. "Size optimization of a PV/wind hybrid energy conversion system with battery storage using response surface methodology," Applied Energy, Elsevier, vol. 85(11), pages 1086-1101, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhe Jiang & Xueshan Han & Zhimin Li & Wenbo Li & Mengxia Wang & Mingqiang Wang, 2016. "Two-Stage Multi-Objective Collaborative Scheduling for Wind Farm and Battery Switch Station," Energies, MDPI, vol. 9(11), pages 1-17, October.
    2. Chunghun Kim & Eduard Muljadi & Chung Choo Chung, 2017. "Coordinated Control of Wind Turbine and Energy Storage System for Reducing Wind Power Fluctuation," Energies, MDPI, vol. 11(1), pages 1-18, December.
    3. Bartosz Ceran & Agata Orłowska, 2019. "The Impact of Power Source Performance Decrease in a PV/WT/FC Hybrid Power Generation System on the Result of a Multi-Criteria Analysis of Load Distribution," Energies, MDPI, vol. 12(18), pages 1-19, September.
    4. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    5. Xiaodong Yu & Xia Dong & Shaopeng Pang & Luanai Zhou & Hongzhi Zang, 2019. "Energy Storage Sizing Optimization and Sensitivity Analysis Based on Wind Power Forecast Error Compensation," Energies, MDPI, vol. 12(24), pages 1-21, December.
    6. Micke Talvi & Tomi Roinila & Kari Lappalainen, 2023. "Effects of Ramp Rate Limit on Sizing of Energy Storage Systems for PV, Wind and PV–Wind Power Plants," Energies, MDPI, vol. 16(11), pages 1-18, May.
    7. Colak, Ilhami & Kabalci, Ersan & Fulli, Gianluca & Lazarou, Stavros, 2015. "A survey on the contributions of power electronics to smart grid systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 562-579.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    2. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    3. Sharafi, Masoud & ElMekkawy, Tarek Y., 2015. "Stochastic optimization of hybrid renewable energy systems using sampling average method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1668-1679.
    4. Abdullah, M.A. & Agalgaonkar, A.P. & Muttaqi, K.M., 2014. "Assessment of energy supply and continuity of service in distribution network with renewable distributed generation," Applied Energy, Elsevier, vol. 113(C), pages 1015-1026.
    5. Berrada, Asmae & Loudiyi, Khalid, 2016. "Operation, sizing, and economic evaluation of storage for solar and wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1117-1129.
    6. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    7. Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Bernal-Agustín, José L., 2014. "Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems," Applied Energy, Elsevier, vol. 115(C), pages 242-253.
    8. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    9. Chen, Jun & Garcia, Humberto E., 2016. "Economic optimization of operations for hybrid energy systems under variable markets," Applied Energy, Elsevier, vol. 177(C), pages 11-24.
    10. Wissem, Zghal & Gueorgui, Kantchev & Hédi, Kchaou, 2012. "Modeling and technical–economic optimization of an autonomous photovoltaic system," Energy, Elsevier, vol. 37(1), pages 263-272.
    11. Narayan, Nishant & Chamseddine, Ali & Vega-Garita, Victor & Qin, Zian & Popovic-Gerber, Jelena & Bauer, Pavol & Zeman, Miroslav, 2019. "Exploring the boundaries of Solar Home Systems (SHS) for off-grid electrification: Optimal SHS sizing for the multi-tier framework for household electricity access," Applied Energy, Elsevier, vol. 240(C), pages 907-917.
    12. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    13. Meschede, Henning & Dunkelberg, Heiko & Stöhr, Fabian & Peesel, Ron-Hendrik & Hesselbach, Jens, 2017. "Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods," Energy, Elsevier, vol. 128(C), pages 86-100.
    14. Chen, Jun & Rabiti, Cristian, 2017. "Synthetic wind speed scenarios generation for probabilistic analysis of hybrid energy systems," Energy, Elsevier, vol. 120(C), pages 507-517.
    15. Pourmohammadi, Pardis & Saif, Ahmed, 2023. "Robust metamodel-based simulation-optimization approaches for designing hybrid renewable energy systems," Applied Energy, Elsevier, vol. 341(C).
    16. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.
    17. Chennaif, Mohammed & Maaouane, Mohamed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2022. "Tri-objective techno-economic sizing optimization of Off-grid and On-grid renewable energy systems using Electric system Cascade Extended analysis and system Advisor Model," Applied Energy, Elsevier, vol. 305(C).
    18. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    19. Hung, Tzu-Chieh & Chong, John & Chan, Kuei-Yuan, 2017. "Reducing uncertainty accumulation in wind-integrated electrical grid," Energy, Elsevier, vol. 141(C), pages 1072-1083.
    20. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:6:y:2013:i:7:p:3392-3404:d:27099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.