IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1892-d1376509.html
   My bibliography  Save this article

Chance-Constrained Optimal Design of PV-Based Microgrids under Grid Blackout Uncertainties

Author

Listed:
  • Mansour Alramlawi

    (Department of Cognitive Energy Systems, Fraunhofer IOSB-AST, 98693 Ilmenau, Germany)

  • Pu Li

    (Department of Process Optimization, Institute of Automation and Systems Engineering, Ilmenau University of Technology, 98693 Ilmenau, Germany)

Abstract

A grid blackout is an intractable problem with serious economic consequences in many developing countries. Although it has been proven that microgrids (MGs) are capable of solving this problem, the uncertainties regarding when and for how long blackouts occur lead to extreme difficulties in the design and operation of the related MGs. This paper addresses the optimal design problem of the MGs considering the uncertainties of the blackout starting time and duration utilizing the kernel density estimator method. Additionally, uncertainties in solar irradiance and ambient temperature are also considered. For that, chance-constrained optimization is employed to design residential and industrial PV-based MGs. The proposed approach aims to minimize the expected value of the levelized cost of energy ( L C O E ), where the restriction of the annual total loss of power supply ( T L P S ) is addressed as a chance constraint. The results show that blackout uncertainties have a considerable effect on calculating the size of the MG’s components, especially the battery bank size. Additionally, it is proven that considering the uncertainties of the input parameters leads to an accurate estimation for the LCOE and increases the MG reliability level.

Suggested Citation

  • Mansour Alramlawi & Pu Li, 2024. "Chance-Constrained Optimal Design of PV-Based Microgrids under Grid Blackout Uncertainties," Energies, MDPI, vol. 17(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1892-:d:1376509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsianikas, Stamatis & Zhou, Jian & Birnie, Dunbar P. & Coit, David W., 2019. "Economic trends and comparisons for optimizing grid-outage resilient photovoltaic and battery systems," Applied Energy, Elsevier, vol. 256(C).
    2. Roy, Anindita & Kedare, Shireesh B. & Bandyopadhyay, Santanu, 2010. "Optimum sizing of wind-battery systems incorporating resource uncertainty," Applied Energy, Elsevier, vol. 87(8), pages 2712-2727, August.
    3. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.
    2. Zhang, Jiyuan & Tang, Hailong & Chen, Min, 2019. "Linear substitute model-based uncertainty analysis of complicated non-linear energy system performance (case study of an adaptive cycle engine)," Applied Energy, Elsevier, vol. 249(C), pages 87-108.
    3. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    4. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    5. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    6. Qyyum, Muhammad Abdul & Duong, Pham Luu Trung & Minh, Le Quang & Lee, Sanggyu & Lee, Moonyong, 2019. "Dual mixed refrigerant LNG process: Uncertainty quantification and dimensional reduction sensitivity analysis," Applied Energy, Elsevier, vol. 250(C), pages 1446-1456.
    7. Zhong, Shengyuan & Zhao, Jun & Li, Wenjia & Li, Hao & Deng, Shuai & Li, Yang & Hussain, Sajjad & Wang, Xiaoyuan & Zhu, Jiebei, 2021. "Quantitative analysis of information interaction in building energy systems based on mutual information," Energy, Elsevier, vol. 214(C).
    8. Luerssen, Christoph & Verbois, Hadrien & Gandhi, Oktoviano & Reindl, Thomas & Sekhar, Chandra & Cheong, David, 2021. "Global sensitivity and uncertainty analysis of the levelised cost of storage (LCOS) for solar-PV-powered cooling," Applied Energy, Elsevier, vol. 286(C).
    9. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    10. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2021. "Energy equipment sizing and operation optimisation for prosumer industrial SMEs – A lifetime approach," Applied Energy, Elsevier, vol. 299(C).
    11. Wu, Raphael & Sansavini, Giovanni, 2020. "Integrating reliability and resilience to support the transition from passive distribution grids to islanding microgrids," Applied Energy, Elsevier, vol. 272(C).
    12. Liu, Liuchen & Cui, Guomin & Chen, Jiaxing & Huang, Xiaohuang & Li, Di, 2022. "Two-stage superstructure model for optimization of distributed energy systems (DES) part I: Model development and verification," Energy, Elsevier, vol. 245(C).
    13. Meschede, Henning & Dunkelberg, Heiko & Stöhr, Fabian & Peesel, Ron-Hendrik & Hesselbach, Jens, 2017. "Assessment of probabilistic distributed factors influencing renewable energy supply for hotels using Monte-Carlo methods," Energy, Elsevier, vol. 128(C), pages 86-100.
    14. Su, Ziyi & Li, Xiaofeng, 2022. "Extraction of key parameters and simplification of sub-system energy models using sensitivity analysis in subway stations," Energy, Elsevier, vol. 261(PA).
    15. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    16. Gorman, Will & Barbose, Galen & Pablo Carvallo, Juan & Baik, Sunhee & Miller, Chandler & White, Philip & Praprost, Marlena, 2023. "County-level assessment of behind-the-meter solar and storage to mitigate long duration power interruptions for residential customers," Applied Energy, Elsevier, vol. 342(C).
    17. Chennaif, Mohammed & Maaouane, Mohamed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2022. "Tri-objective techno-economic sizing optimization of Off-grid and On-grid renewable energy systems using Electric system Cascade Extended analysis and system Advisor Model," Applied Energy, Elsevier, vol. 305(C).
    18. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    19. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    20. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1892-:d:1376509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.