IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i8p1892-d1376509.html
   My bibliography  Save this article

Chance-Constrained Optimal Design of PV-Based Microgrids under Grid Blackout Uncertainties

Author

Listed:
  • Mansour Alramlawi

    (Department of Cognitive Energy Systems, Fraunhofer IOSB-AST, 98693 Ilmenau, Germany)

  • Pu Li

    (Department of Process Optimization, Institute of Automation and Systems Engineering, Ilmenau University of Technology, 98693 Ilmenau, Germany)

Abstract

A grid blackout is an intractable problem with serious economic consequences in many developing countries. Although it has been proven that microgrids (MGs) are capable of solving this problem, the uncertainties regarding when and for how long blackouts occur lead to extreme difficulties in the design and operation of the related MGs. This paper addresses the optimal design problem of the MGs considering the uncertainties of the blackout starting time and duration utilizing the kernel density estimator method. Additionally, uncertainties in solar irradiance and ambient temperature are also considered. For that, chance-constrained optimization is employed to design residential and industrial PV-based MGs. The proposed approach aims to minimize the expected value of the levelized cost of energy ( L C O E ), where the restriction of the annual total loss of power supply ( T L P S ) is addressed as a chance constraint. The results show that blackout uncertainties have a considerable effect on calculating the size of the MG’s components, especially the battery bank size. Additionally, it is proven that considering the uncertainties of the input parameters leads to an accurate estimation for the LCOE and increases the MG reliability level.

Suggested Citation

  • Mansour Alramlawi & Pu Li, 2024. "Chance-Constrained Optimal Design of PV-Based Microgrids under Grid Blackout Uncertainties," Energies, MDPI, vol. 17(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1892-:d:1376509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/8/1892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/8/1892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tsianikas, Stamatis & Zhou, Jian & Birnie, Dunbar P. & Coit, David W., 2019. "Economic trends and comparisons for optimizing grid-outage resilient photovoltaic and battery systems," Applied Energy, Elsevier, vol. 256(C).
    2. Roy, Anindita & Kedare, Shireesh B. & Bandyopadhyay, Santanu, 2010. "Optimum sizing of wind-battery systems incorporating resource uncertainty," Applied Energy, Elsevier, vol. 87(8), pages 2712-2727, August.
    3. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "Uncertainty and global sensitivity analysis for the optimal design of distributed energy systems," Applied Energy, Elsevier, vol. 214(C), pages 219-238.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonathan Dumas & Antoine Dubois & Paolo Thiran & Pierre Jacques & Francesco Contino & Bertrand Cornélusse & Gauthier Limpens, 2022. "The Energy Return on Investment of Whole-Energy Systems: Application to Belgium," Biophysical Economics and Resource Quality, Springer, vol. 7(4), pages 1-34, December.
    2. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    3. Àlex Alonso & Jordi de la Hoz & Helena Martín & Sergio Coronas & Pep Salas & José Matas, 2020. "A Comprehensive Model for the Design of a Microgrid under Regulatory Constraints Using Synthetical Data Generation and Stochastic Optimization," Energies, MDPI, vol. 13(21), pages 1-26, October.
    4. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    5. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    6. Guo, Rui & Shamsi, Mohammad Haris & Sharifi, Mohsen & Saelens, Dirk, 2025. "Exploring uncertainty in district heat demand through a probabilistic building characterization approach," Applied Energy, Elsevier, vol. 377(PA).
    7. Chennaif, Mohammed & Maaouane, Mohamed & Zahboune, Hassan & Elhafyani, Mohammed & Zouggar, Smail, 2022. "Tri-objective techno-economic sizing optimization of Off-grid and On-grid renewable energy systems using Electric system Cascade Extended analysis and system Advisor Model," Applied Energy, Elsevier, vol. 305(C).
    8. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    9. Wouters, Carmen & Fraga, Eric S. & James, Adrian M., 2015. "An energy integrated, multi-microgrid, MILP (mixed-integer linear programming) approach for residential distributed energy system planning – A South Australian case-study," Energy, Elsevier, vol. 85(C), pages 30-44.
    10. Hung, Tzu-Chieh & Chong, John & Chan, Kuei-Yuan, 2017. "Reducing uncertainty accumulation in wind-integrated electrical grid," Energy, Elsevier, vol. 141(C), pages 1072-1083.
    11. Copp, David A. & Nguyen, Tu A. & Byrne, Raymond H. & Chalamala, Babu R., 2022. "Optimal sizing of distributed energy resources for planning 100% renewable electric power systems," Energy, Elsevier, vol. 239(PE).
    12. Ma, Yinjie & Yang, Dong & Xie, Deyi & E, Jiaqiang, 2024. "Investigating the effect of fuel properties and environmental parameters on low-octane gasoline-like fuel spray combustion and emissions using machine learning-global sensitivity analysis method," Energy, Elsevier, vol. 306(C).
    13. Schyska, Bruno U. & Kies, Alexander, 2020. "How regional differences in cost of capital influence the optimal design of power systems," Applied Energy, Elsevier, vol. 262(C).
    14. Mavromatidis, Georgios & Orehounig, Kristina & Carmeliet, Jan, 2018. "A review of uncertainty characterisation approaches for the optimal design of distributed energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 258-277.
    15. Perera, A.T.D. & Khayatian, F. & Eggimann, S. & Orehounig, K. & Halgamuge, Saman, 2022. "Quantifying the climate and human-system-driven uncertainties in energy planning by using GANs," Applied Energy, Elsevier, vol. 328(C).
    16. Li, Ke & Yang, Fan & Wang, Lupan & Yan, Yi & Wang, Haiyang & Zhang, Chenghui, 2022. "A scenario-based two-stage stochastic optimization approach for multi-energy microgrids," Applied Energy, Elsevier, vol. 322(C).
    17. Camilo Andres Mora & Oscar Danilo Montoya & Edwin Rivas Trujillo, 2020. "Mixed-Integer Programming Model for Transmission Network Expansion Planning with Battery Energy Storage Systems (BESS)," Energies, MDPI, vol. 13(17), pages 1-22, August.
    18. Kun Mo LEE & Min Hyeok LEE, 2021. "Uncertainty of the Electricity Emission Factor Incorporating the Uncertainty of the Fuel Emission Factors," Energies, MDPI, vol. 14(18), pages 1-14, September.
    19. Pickering, Bryn & Choudhary, Ruchi, 2021. "Quantifying resilience in energy systems with out-of-sample testing," Applied Energy, Elsevier, vol. 285(C).
    20. Wei Wang & Chengxiong Mao & Jiming Lu & Dan Wang, 2013. "An Energy Storage System Sizing Method for Wind Power Integration," Energies, MDPI, vol. 6(7), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1892-:d:1376509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.