IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v87y2010i6p1996-2004.html
   My bibliography  Save this item

Improved district heating substation efficiency with a new control strategy

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Best, Robert E. & Rezazadeh Kalehbasti, P. & Lepech, Michael D., 2020. "A novel approach to district heating and cooling network design based on life cycle cost optimization," Energy, Elsevier, vol. 194(C).
  2. Aleksander Skała & Jakub Grela & Dominik Latoń & Katarzyna Bańczyk & Michał Markiewicz & Andrzej Ożadowicz, 2023. "Implementation of Building a Thermal Model to Improve Energy Efficiency of the Central Heating System—A Case Study," Energies, MDPI, vol. 16(19), pages 1-27, September.
  3. Sun, Jian & Fu, Lin & Sun, Fangtian & Zhang, Shigang, 2014. "Study on a heat recovery system for the thermal power plant utilizing air cooling island," Energy, Elsevier, vol. 74(C), pages 836-844.
  4. Liu, Zhikai & Zhang, Huan & Wang, Yaran & Jiang, Yan & He, Zhihao & Zhou, Pengkun, 2023. "An adaptive double-Newton-iteration hydraulic calculation method for optimal operation of the meshed district heating network," Energy, Elsevier, vol. 272(C).
  5. Zhang, Tong & Li, Zhigang & Wu, Q.H. & Zhou, Xiaoxin, 2019. "Decentralized state estimation of combined heat and power systems using the asynchronous alternating direction method of multipliers," Applied Energy, Elsevier, vol. 248(C), pages 600-613.
  6. Vannahme, Anna & Ehrenwirth, Mathias & Schrag, Tobias, 2024. "Development and application of a guideline for assessing optimization potentials for district heating systems," Energy, Elsevier, vol. 297(C).
  7. Antonio Martinez-Molina & Miltiadis Alamaniotis, 2020. "Enhancing Historic Building Performance with the Use of Fuzzy Inference System to Control the Electric Cooling System," Sustainability, MDPI, vol. 12(14), pages 1-14, July.
  8. Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
  9. Pirouti, Marouf & Bagdanavicius, Audrius & Ekanayake, Janaka & Wu, Jianzhong & Jenkins, Nick, 2013. "Energy consumption and economic analyses of a district heating network," Energy, Elsevier, vol. 57(C), pages 149-159.
  10. Jie, Pengfei & Kong, Xiangfei & Rong, Xian & Xie, Shangqun, 2016. "Selecting the optimum pressure drop per unit length of district heating piping network based on operating strategies," Applied Energy, Elsevier, vol. 177(C), pages 341-353.
  11. Guelpa, Elisa & Toro, Claudia & Sciacovelli, Adriano & Melli, Roberto & Sciubba, Enrico & Verda, Vittorio, 2016. "Optimal operation of large district heating networks through fast fluid-dynamic simulation," Energy, Elsevier, vol. 102(C), pages 586-595.
  12. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
  13. Ahn, Jonghoon & Cho, Soolyeon & Chung, Dae Hun, 2017. "Analysis of energy and control efficiencies of fuzzy logic and artificial neural network technologies in the heating energy supply system responding to the changes of user demands," Applied Energy, Elsevier, vol. 190(C), pages 222-231.
  14. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
  15. Heng Chen & Zhen Qi & Qiao Chen & Yunyun Wu & Gang Xu & Yongping Yang, 2018. "Modified High Back-Pressure Heating System Integrated with Raw Coal Pre-Drying in Combined Heat and Power Unit," Energies, MDPI, vol. 11(9), pages 1-16, September.
  16. Li, Yan & Chang, Shanshan & Fu, Lin & Zhang, Shuyan, 2016. "A technology review on recovering waste heat from the condensers of large turbine units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 287-296.
  17. Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
  18. Guelpa, Elisa & Verda, Vittorio, 2018. "Model for optimal malfunction management in extended district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 519-530.
  19. Liu, Zhikai & Zhang, Huan & Wang, Yaran & You, Shijun & Dai, Ting & Jiang, Yan, 2024. "Evaluation of the controllability of multi-family building with radiator heating systems: A frequency domain approach," Energy, Elsevier, vol. 294(C).
  20. Guelpa, Elisa & Marincioni, Ludovica, 2019. "Demand side management in district heating systems by innovative control," Energy, Elsevier, vol. 188(C).
  21. Theofanis Benakopoulos & Robbe Salenbien & Dirk Vanhoudt & Svend Svendsen, 2019. "Improved Control of Radiator Heating Systems with Thermostatic Radiator Valves without Pre-Setting Function," Energies, MDPI, vol. 12(17), pages 1-24, August.
  22. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
  23. Yuan, Jianjuan & Wang, Chendong & Zhou, Zhihua, 2019. "Study on refined control and prediction model of district heating station based on support vector machine," Energy, Elsevier, vol. 189(C).
  24. Gadd, Henrik & Werner, Sven, 2014. "Achieving low return temperatures from district heating substations," Applied Energy, Elsevier, vol. 136(C), pages 59-67.
  25. Muniak, Damian Piotr, 2014. "A new methodology to determine the pre-setting of the control valve in a heating installation. A general model," Applied Energy, Elsevier, vol. 135(C), pages 35-42.
  26. Hong, Yejin & Yoon, Sungmin, 2022. "Holistic Operational Signatures for an energy-efficient district heating substation in buildings," Energy, Elsevier, vol. 250(C).
  27. Sperling, Karl & Möller, Bernd, 2012. "End-use energy savings and district heating expansion in a local renewable energy system – A short-term perspective," Applied Energy, Elsevier, vol. 92(C), pages 831-842.
  28. Gadd, Henrik & Werner, Sven, 2013. "Heat load patterns in district heating substations," Applied Energy, Elsevier, vol. 108(C), pages 176-183.
  29. Anna Vannahme & Mathias Ehrenwirth & Tobias Schrag, 2021. "Enhancement of a District Heating Substation as Part of a Low-Investment Optimization Strategy for District Heating Systems," Resources, MDPI, vol. 10(5), pages 1-17, May.
  30. Hu, Tianle & Xie, Xiaoyun & Jiang, Yi, 2017. "Simulation research on a variable-lift absorption cycle and its application in waste heat recovery of combined heat and power system," Energy, Elsevier, vol. 140(P1), pages 912-921.
  31. Sarbassov, Yerbol & Kerimray, Aiymgul & Tokmurzin, Diyar & Tosato, GianCarlo & De Miglio, Rocco, 2013. "Electricity and heating system in Kazakhstan: Exploring energy efficiency improvement paths," Energy Policy, Elsevier, vol. 60(C), pages 431-444.
  32. Anna Vannahme & Jonas Busch & Mathias Ehrenwirth & Tobias Schrag, 2023. "Experimental Study of District Heating Substations in a Hardware-in-the-Loop Test Rig," Resources, MDPI, vol. 12(4), pages 1-13, March.
  33. Rezaie, Behnaz & Rosen, Marc A., 2012. "District heating and cooling: Review of technology and potential enhancements," Applied Energy, Elsevier, vol. 93(C), pages 2-10.
  34. Licklederer, Thomas & Zinsmeister, Daniel & Lukas, Lorenz & Speer, Fabian & Hamacher, Thomas & Perić, Vedran S., 2024. "Control of bidirectional prosumer substations in smart thermal grids: A weighted proportional-integral control approach," Applied Energy, Elsevier, vol. 354(PA).
  35. Gustafsson, Jonas & Delsing, Jerker & van Deventer, Jan, 2011. "Experimental evaluation of radiator control based on primary supply temperature for district heating substations," Applied Energy, Elsevier, vol. 88(12), pages 4945-4951.
  36. Jie, Pengfei & Zhao, Wanyue & Li, Fating & Wei, Fengjun & Li, Jing, 2020. "Optimizing the pressure drop per unit length of district heating piping networks from an environmental perspective," Energy, Elsevier, vol. 202(C).
  37. Bartnicki, Grzegorz & Klimczak, Marcin & Ziembicki, Piotr, 2023. "Evaluation of the effects of optimization of gas boiler burner control by means of an innovative method of Fuel Input Factor," Energy, Elsevier, vol. 263(PD).
  38. Hakan İbrahim Tol & Habtamu Bayera Madessa, 2024. "Return-Temperature Reduction at District Heating Systems: Focus on End-User Sites," Energies, MDPI, vol. 17(19), pages 1-46, September.
  39. Delangle, Axelle & Lambert, Romain S.C. & Shah, Nilay & Acha, Salvador & Markides, Christos N., 2017. "Modelling and optimising the marginal expansion of an existing district heating network," Energy, Elsevier, vol. 140(P1), pages 209-223.
  40. Jangsten, Maria & Lindholm, Torbjörn & Dalenbäck, Jan-Olof, 2022. "District cooling substation design and control to achieve high return temperatures," Energy, Elsevier, vol. 251(C).
  41. Tereshchenko, Tymofii & Nord, Natasa, 2016. "Energy planning of district heating for future building stock based on renewable energies and increasing supply flexibility," Energy, Elsevier, vol. 112(C), pages 1227-1244.
  42. Li, Yu & Rezgui, Yacine & Zhu, Hanxing, 2017. "District heating and cooling optimization and enhancement – Towards integration of renewables, storage and smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 281-294.
  43. Volkova, Anna & Krupenski, Igor & Ledvanov, Aleksandr & Hlebnikov, Aleksandr & Lepiksaar, Kertu & Latõšov, Eduard & Mašatin, Vladislav, 2020. "Energy cascade connection of a low-temperature district heating network to the return line of a high-temperature district heating network," Energy, Elsevier, vol. 198(C).
  44. Ziemele, Jelena & Cilinskis, Einars & Blumberga, Dagnija, 2018. "Pathway and restriction in district heating systems development towards 4th generation district heating," Energy, Elsevier, vol. 152(C), pages 108-118.
  45. Yan, Aibin & Zhao, Jun & An, Qingsong & Zhao, Yulong & Li, Hailong & Huang, Yrjö Jun, 2013. "Hydraulic performance of a new district heating systems with distributed variable speed pumps," Applied Energy, Elsevier, vol. 112(C), pages 876-885.
  46. Cai, Hanmin & Ziras, Charalampos & You, Shi & Li, Rongling & Honoré, Kristian & Bindner, Henrik W., 2018. "Demand side management in urban district heating networks," Applied Energy, Elsevier, vol. 230(C), pages 506-518.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.