IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v86y2009i9p1741-1745.html
   My bibliography  Save this item

Isoconversional kinetic analysis of co-combustion of sewage sludge with straw and coal

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Jeong, Yong-Seong & Park, Ki-Bum & Kim, Joo-Sik, 2022. "Kinetics and characteristics of activator-assisted pyrolysis of municipal waste plastic and chlorine removal using hot filter filled with absorbents," Energy, Elsevier, vol. 238(PB).
  2. Niu, Shengli & Han, Kuihua & Lu, Chunmei & Sun, Rongyue, 2010. "Thermogravimetric analysis of the relationship among calcium magnesium acetate, calcium acetate and magnesium acetate," Applied Energy, Elsevier, vol. 87(7), pages 2237-2242, July.
  3. Wanhe Hu & Jingxin Wang & Jianli Hu & Jamie Schuler & Shawn Grushecky & Changle Jiang & William Smith & Nan Nan & Edward M. Sabolsky, 2024. "Combustion Behaviors, Kinetics, and Thermodynamics of Naturally Decomposed and Torrefied Northern Red Oak ( Quercus rubra ) Forest Logging Residue," Energies, MDPI, vol. 17(7), pages 1-17, March.
  4. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
  5. Al-Ayed, Omar S. & Matouq, M. & Anbar, Z. & Khaleel, Adnan M. & Abu-Nameh, Eyad, 2010. "Oil shale pyrolysis kinetics and variable activation energy principle," Applied Energy, Elsevier, vol. 87(4), pages 1269-1272, April.
  6. Lou, Rui & Wu, Shubin & Lv, Gaojin & Yang, Qing, 2012. "Energy and resource utilization of deinking sludge pyrolysis," Applied Energy, Elsevier, vol. 90(1), pages 46-50.
  7. Oladejo, Jumoke M. & Adegbite, Stephen & Pang, Cheng Heng & Liu, Hao & Parvez, Ashak M. & Wu, Tao, 2017. "A novel index for the study of synergistic effects during the co-processing of coal and biomass," Applied Energy, Elsevier, vol. 188(C), pages 215-225.
  8. Małgorzata Wzorek, 2020. "Evaluating the Potential for Combustion of Biofuels in Grate Furnaces," Energies, MDPI, vol. 13(8), pages 1-15, April.
  9. Alam, Mahboob & Bhavanam, Anjireddy & Jana, Ashirbad & Viroja, Jaimin kumar S. & Peela, Nageswara Rao, 2020. "Co-pyrolysis of bamboo sawdust and plastic: Synergistic effects and kinetics," Renewable Energy, Elsevier, vol. 149(C), pages 1133-1145.
  10. Gil, M.V. & Riaza, J. & Álvarez, L. & Pevida, C. & Pis, J.J. & Rubiera, F., 2012. "Oxy-fuel combustion kinetics and morphology of coal chars obtained in N2 and CO2 atmospheres in an entrained flow reactor," Applied Energy, Elsevier, vol. 91(1), pages 67-74.
  11. Lai, ZhiYi & Ma, XiaoQian & Tang, YuTing & Lin, Hai, 2011. "A study on municipal solid waste (MSW) combustion in N2/O2 and CO2/O2 atmosphere from the perspective of TGA," Energy, Elsevier, vol. 36(2), pages 819-824.
  12. Ahn, Hyungjun & Kim, Donghee & Lee, Youngjae, 2020. "Combustion characteristics of sewage sludge solid fuels produced by drying and hydrothermal carbonization in a fluidized bed," Renewable Energy, Elsevier, vol. 147(P1), pages 957-968.
  13. Oladejo, Jumoke & Adegbite, Stephen & Gao, Xiang & Liu, Hao & Wu, Tao, 2018. "Catalytic and non-catalytic synergistic effects and their individual contributions to improved combustion performance of coal/biomass blends," Applied Energy, Elsevier, vol. 211(C), pages 334-345.
  14. Zhang, Yuanbo & Zhang, Yutao & Li, Yaqing & Shi, Xueqiang & Che, Bo, 2022. "Determination of ignition temperature and kinetics and thermodynamics analysis of high-volatile coal based on differential derivative thermogravimetry," Energy, Elsevier, vol. 240(C).
  15. Kalembkiewicz, Jan & Chmielarz, Urszula, 2012. "Ashes from co-combustion of coal and biomass: New industrial wastes," Resources, Conservation & Recycling, Elsevier, vol. 69(C), pages 109-121.
  16. Coimbra, Ricardo N. & Paniagua, Sergio & Escapa, Carla & Calvo, Luis F. & Otero, Marta, 2015. "Combustion of primary and secondary pulp mill sludge and their respective blends with coal: A thermogravimetric assessment," Renewable Energy, Elsevier, vol. 83(C), pages 1050-1058.
  17. Kou, Mingyin & Zuo, Haibin & Ning, Xiaojun & Wang, Guangwei & Hong, Zhibin & Xu, Haifa & Wu, Shengli, 2019. "Thermogravimetric study on gasification kinetics of hydropyrolysis char derived from low rank coal," Energy, Elsevier, vol. 188(C).
  18. Junga, Robert & Pospolita, Janusz & Niemiec, Patrycja, 2020. "Combustion and grindability characteristics of palm kernel shells torrefied in a pilot-scale installation," Renewable Energy, Elsevier, vol. 147(P1), pages 1239-1250.
  19. Ma, Jinxing & Wang, Zhiwei & Zhu, Chaowei & Xu, Yinlun & Wu, Zhichao, 2014. "Electrogenesis reduces the combustion efficiency of sewage sludge," Applied Energy, Elsevier, vol. 114(C), pages 283-289.
  20. Sever Akdağ, Ayşe & Atak, Onur & Atimtay, Aysel T. & Sanin, Faika Dilek, 2018. "Co-combustion of sewage sludge from different treatment processes and a lignite coal in a laboratory scale combustor," Energy, Elsevier, vol. 158(C), pages 417-426.
  21. Aniza, Ria & Chen, Wei-Hsin & Lin, Yu-Ying & Tran, Khanh-Quang & Chang, Jo-Shu & Lam, Su Shiung & Park, Young-Kwon & Kwon, Eilhann E. & Tabatabaei, Meisam, 2021. "Independent parallel pyrolysis kinetics of extracted proteins and lipids as well as model carbohydrates in microalgae," Applied Energy, Elsevier, vol. 300(C).
  22. Na Xu & Mifen Cui & Zhuxiu Zhang & Jihai Tang & Xu Qiao, 2022. "Quest for the Co-Pyrolysis Behavior of Rice Husk and Cresol Distillation Residue: Interaction, Gas Evolution and Kinetics," Energies, MDPI, vol. 15(6), pages 1-13, March.
  23. Chen, Chunxiang & Ma, Xiaoqian & Liu, Kai, 2011. "Thermogravimetric analysis of microalgae combustion under different oxygen supply concentrations," Applied Energy, Elsevier, vol. 88(9), pages 3189-3196.
  24. Ma, Peiyong & Yang, Jing & Xing, Xianjun & Weihrich, Sebastian & Fan, Fangyu & Zhang, Xianwen, 2017. "Isoconversional kinetics and characteristics of combustion on hydrothermally treated biomass," Renewable Energy, Elsevier, vol. 114(PB), pages 1069-1076.
  25. Atnaw, Samson Mekbib & Sulaiman, Shaharin Anwar & Yusup, Suzana, 2013. "Syngas production from downdraft gasification of oil palm fronds," Energy, Elsevier, vol. 61(C), pages 491-501.
  26. Garcia-Maraver, Angela & Perez-Jimenez, Jose A. & Serrano-Bernardo, Francisco & Zamorano, Montserrat, 2015. "Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees," Renewable Energy, Elsevier, vol. 83(C), pages 897-904.
  27. Fidalgo, B. & Chilmeran, M. & Somorin, T. & Sowale, A. & Kolios, A. & Parker, A. & Williams, L. & Collins, M. & McAdam, E.J. & Tyrrel, S., 2019. "Non-isothermal thermogravimetric kinetic analysis of the thermochemical conversion of human faeces," Renewable Energy, Elsevier, vol. 132(C), pages 1177-1184.
  28. Kuznetsov, G.V. & Yankovsky, S.A. & Tolokolnikov, A.A. & Zenkov, A.V. & Cherednik, I.V., 2020. "Conditions and characteristics of mixed fuel granules ignition based on coal and finely dispersed wood," Energy, Elsevier, vol. 194(C).
  29. Jiang, Peng & Meng, Yang & Parvez, Ashak Mahmud & Dong, Xin-yue & Wu, Xin-yun & Xu, Meng-xia & Pang, Cheng Heng & Sun, Cheng-gong & Wu, Tao, 2021. "Influence of co-processing of coal and oil shale on combustion characteristics, kinetics and ash fusion behaviour," Energy, Elsevier, vol. 216(C).
  30. Tan, Peng & Ma, Lun & Xia, Ji & Fang, Qingyan & Zhang, Cheng & Chen, Gang, 2017. "Co-firing sludge in a pulverized coal-fired utility boiler: Combustion characteristics and economic impacts," Energy, Elsevier, vol. 119(C), pages 392-399.
  31. Huang, Zhian & Yu, Rongxia & Ding, Hao & Wang, Hongsheng & Quan, Sainan & Song, Donghong & Lei, Yukun & Gao, Yukun & Zhang, Yinghua & Wang, Pengfei, 2023. "Preparation and properties of tea polyphenol nanofoamed gel for preventing coal spontaneous combustion," Energy, Elsevier, vol. 284(C).
  32. Yi, Honghong & Yang, Zhongyu & Tang, Xiaolong & Zhao, Shunzheng & Gao, Fengyu & Wang, Jiangen & Huang, Yonghai & Yang, Kun & Shi, Yiran & Xie, Xizhou, 2018. "Variations of apparent activation energy based on thermodynamics analysis of zeolitic imidazolate frameworks including pyrolysis and combustion," Energy, Elsevier, vol. 151(C), pages 782-798.
  33. Liang, Wang & Jiang, Chunhe & Wang, Guangwei & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Xu, Runsheng & Wang, Peng & Ye, Lian & Li, Jinhua & Wang, Chuan, 2022. "Research on the co-combustion characteristics and kinetics of agricultural waste hydrochar and anthracite," Renewable Energy, Elsevier, vol. 194(C), pages 1119-1130.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.