IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v300y2021ics0306261921007546.html
   My bibliography  Save this item

A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Feng, Juqiang & Cai, Feng & Zhao, Yang & Zhang, Xing & Zhan, Xinju & Wang, Shunli, 2024. "A novel feature optimization and ensemble learning method for state-of-health prediction of mining lithium-ion batteries," Energy, Elsevier, vol. 299(C).
  2. Li, Alan G. & Wang, Weizhong & West, Alan C. & Preindl, Matthias, 2022. "Health and performance diagnostics in Li-ion batteries with pulse-injection-aided machine learning," Applied Energy, Elsevier, vol. 315(C).
  3. Chen, Junxiong & Hu, Yuanjiang & Zhu, Qiao & Rashid, Haroon & Li, Hongkun, 2023. "A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging," Energy, Elsevier, vol. 282(C).
  4. Tian, Jiaqiang & Liu, Xinghua & Li, Siqi & Wei, Zhongbao & Zhang, Xu & Xiao, Gaoxi & Wang, Peng, 2023. "Lithium-ion battery health estimation with real-world data for electric vehicles," Energy, Elsevier, vol. 270(C).
  5. Xinwei Sun & Yang Zhang & Yongcheng Zhang & Licheng Wang & Kai Wang, 2023. "Summary of Health-State Estimation of Lithium-Ion Batteries Based on Electrochemical Impedance Spectroscopy," Energies, MDPI, vol. 16(15), pages 1-19, July.
  6. Meng, Jinhao & You, Yuqiang & Lin, Mingqiang & Wu, Ji & Song, Zhengxiang, 2024. "Multi-scenarios transferable learning framework with few-shot for early lithium-ion battery lifespan trajectory prediction," Energy, Elsevier, vol. 286(C).
  7. Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).
  8. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).
  9. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
  10. Zhang, Zhengjie & Cao, Rui & Zheng, Yifan & Zhang, Lisheng & Guang, Haoran & Liu, Xinhua & Gao, Xinlei & Yang, Shichun, 2024. "Online state of health estimation for lithium-ion batteries based on gene expression programming," Energy, Elsevier, vol. 294(C).
  11. Ester Vasta & Tommaso Scimone & Giovanni Nobile & Otto Eberhardt & Daniele Dugo & Massimiliano Maurizio De Benedetti & Luigi Lanuzza & Giuseppe Scarcella & Luca Patanè & Paolo Arena & Mario Cacciato, 2023. "Models for Battery Health Assessment: A Comparative Evaluation," Energies, MDPI, vol. 16(2), pages 1-34, January.
  12. Gong, Dongliang & Gao, Ying & Kou, Yalin & Wang, Yurang, 2022. "State of health estimation for lithium-ion battery based on energy features," Energy, Elsevier, vol. 257(C).
  13. Huang, Zhiliang & Wang, Huaixing & Gan, Zhouwang & Yang, Tongguang & Yuan, Cong & Lei, Bing & Chen, Jie & Wu, Shengben, 2024. "An mechanical/thermal analytical model for prismatic lithium-ion cells with silicon‑carbon electrodes in charge/discharge cycles," Applied Energy, Elsevier, vol. 365(C).
  14. Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
  15. Zhang, Ran & Ji, ChunHui & Zhou, Xing & Liu, Tianyu & Jin, Guang & Pan, Zhengqiang & Liu, Yajie, 2024. "Capacity estimation of lithium-ion batteries with uncertainty quantification based on temporal convolutional network and Gaussian process regression," Energy, Elsevier, vol. 297(C).
  16. Kurucan, Mehmet & Özbaltan, Mete & Yetgin, Zeki & Alkaya, Alkan, 2024. "Applications of artificial neural network based battery management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  17. Ephrem Chemali & Phillip J. Kollmeyer & Matthias Preindl & Youssef Fahmy & Ali Emadi, 2022. "A Convolutional Neural Network Approach for Estimation of Li-Ion Battery State of Health from Charge Profiles," Energies, MDPI, vol. 15(3), pages 1-15, February.
  18. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
  19. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "An interpretable state of health estimation method for lithium-ion batteries based on multi-category and multi-stage features," Energy, Elsevier, vol. 283(C).
  20. Ehab Issa El-Sayed & Salah K. ElSayed & Mohammad Alsharef, 2024. "Data-Driven Approaches for State-of-Charge Estimation in Battery Electric Vehicles Using Machine and Deep Learning Techniques," Sustainability, MDPI, vol. 16(21), pages 1-21, October.
  21. Eirik Odinsen & Mahshid N. Amiri & Odne S. Burheim & Jacob J. Lamb, 2024. "Estimation of Differential Capacity in Lithium-Ion Batteries Using Machine Learning Approaches," Energies, MDPI, vol. 17(19), pages 1-15, October.
  22. Solmaz Nazaralizadeh & Paramarshi Banerjee & Anurag K. Srivastava & Parviz Famouri, 2024. "Battery Energy Storage Systems: A Review of Energy Management Systems and Health Metrics," Energies, MDPI, vol. 17(5), pages 1-21, March.
  23. Wang, Qiao & Ye, Min & Cai, Xue & Sauer, Dirk Uwe & Li, Weihan, 2023. "Transferable data-driven capacity estimation for lithium-ion batteries with deep learning: A case study from laboratory to field applications," Applied Energy, Elsevier, vol. 350(C).
  24. Li, Alan G. & West, Alan C. & Preindl, Matthias, 2022. "Towards unified machine learning characterization of lithium-ion battery degradation across multiple levels: A critical review," Applied Energy, Elsevier, vol. 316(C).
  25. Lin, Chuanping & Xu, Jun & Shi, Mingjie & Mei, Xuesong, 2022. "Constant current charging time based fast state-of-health estimation for lithium-ion batteries," Energy, Elsevier, vol. 247(C).
  26. Wang, Jinyu & Zhang, Caiping & Zhang, Linjing & Su, Xiaojia & Zhang, Weige & Li, Xu & Du, Jingcai, 2023. "A novel aging characteristics-based feature engineering for battery state of health estimation," Energy, Elsevier, vol. 273(C).
  27. Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
  28. Wang, Cong & Chen, Yunxia, 2024. "Unsupervised dynamic prognostics for abnormal degradation of lithium-ion battery," Applied Energy, Elsevier, vol. 365(C).
  29. Wu, Lifeng & Zhang, Yu, 2023. "Attention-based encoder-decoder networks for state of charge estimation of lithium-ion battery," Energy, Elsevier, vol. 268(C).
  30. Takyi-Aninakwa, Paul & Wang, Shunli & Liu, Guangchen & Bage, Alhamdu Nuhu & Bobobee, Etse Dablu & Appiah, Emmanuel & Huang, Qi, 2024. "Enhanced extended-input LSTM with an adaptive singular value decomposition UKF for LIB SOC estimation using full-cycle current rate and temperature data," Applied Energy, Elsevier, vol. 363(C).
  31. Maryam Ghalkhani & Saeid Habibi, 2022. "Review of the Li-Ion Battery, Thermal Management, and AI-Based Battery Management System for EV Application," Energies, MDPI, vol. 16(1), pages 1-16, December.
  32. Ruan, Haokai & Wei, Zhongbao & Shang, Wentao & Wang, Xuechao & He, Hongwen, 2023. "Artificial Intelligence-based health diagnostic of Lithium-ion battery leveraging transient stage of constant current and constant voltage charging," Applied Energy, Elsevier, vol. 336(C).
  33. Zhu, Yuli & Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wang, Rong & Wei, Xuezhe & Dai, Haifeng, 2023. "Adaptive state of health estimation for lithium-ion batteries using impedance-based timescale information and ensemble learning," Energy, Elsevier, vol. 284(C).
  34. Li, Xiaoyu & Lyu, Mohan & Li, Kuo & Gao, Xiao & Liu, Caixia & Zhang, Zhaosheng, 2023. "Lithium-ion battery state of health estimation based on multi-source health indicators extraction and sparse Bayesian learning," Energy, Elsevier, vol. 282(C).
  35. Duan, Linchao & Zhang, Xugang & Jiang, Zhigang & Gong, Qingshan & Wang, Yan & Ao, Xiuyi, 2023. "State of charge estimation of lithium-ion batteries based on second-order adaptive extended Kalman filter with correspondence analysis," Energy, Elsevier, vol. 280(C).
  36. Wang, Cong & Chen, Yunxia & Zhang, Qingyuan & Zhu, Jiaxiao, 2023. "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering," Applied Energy, Elsevier, vol. 336(C).
  37. Ko, Chi-Jyun & Chen, Kuo-Ching & Su, Ting-Wei, 2024. "Differential current in constant-voltage charging mode: A novel tool for state-of-health and state-of-charge estimation of lithium-ion batteries," Energy, Elsevier, vol. 288(C).
  38. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  39. Yang, Jufeng & Li, Xin & Sun, Xiaodong & Cai, Yingfeng & Mi, Chris, 2023. "An efficient and robust method for lithium-ion battery capacity estimation using constant-voltage charging time," Energy, Elsevier, vol. 263(PB).
  40. Ly, Sel & Xie, Jiahang & Wolter, Franz-Erich & Nguyen, Hung D. & Weng, Yu, 2023. "T-shape data and probabilistic remaining useful life prediction for Li-ion batteries using multiple non-crossing quantile long short-term memory," Applied Energy, Elsevier, vol. 349(C).
  41. Julan Chen & Guangheng Qi & Kai Wang, 2023. "Synergizing Machine Learning and the Aviation Sector in Lithium-Ion Battery Applications: A Review," Energies, MDPI, vol. 16(17), pages 1-22, August.
  42. Huang, Huanyang & Meng, Jinhao & Wang, Yuhong & Feng, Fei & Cai, Lei & Peng, Jichang & Liu, Tianqi, 2022. "A comprehensively optimized lithium-ion battery state-of-health estimator based on Local Coulomb Counting Curve," Applied Energy, Elsevier, vol. 322(C).
  43. Jun He & Xinyu Liu & Wentao Huang & Bohan Zhang & Zuoming Zhang & Zirui Shao & Zimu Mao, 2024. "Health State Assessment of Lithium-Ion Batteries Based on Multi-Health Feature Fusion and Improved Informer Modeling," Energies, MDPI, vol. 17(9), pages 1-18, April.
  44. Bockrath, Steffen & Lorentz, Vincent & Pruckner, Marco, 2023. "State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles," Applied Energy, Elsevier, vol. 329(C).
  45. Chen, Xiang & Deng, Yelin & Wang, Xingxing & Yuan, Yinnan, 2024. "The capacity degradation path prediction for the prismatic lithium-ion batteries based on the multi-features extraction with SGPR," Energy, Elsevier, vol. 299(C).
  46. Che, Yunhong & Zheng, Yusheng & Wu, Yue & Sui, Xin & Bharadwaj, Pallavi & Stroe, Daniel-Ioan & Yang, Yalian & Hu, Xiaosong & Teodorescu, Remus, 2022. "Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network," Applied Energy, Elsevier, vol. 323(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.