IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v282y2021ipas0306261920315804.html
   My bibliography  Save this item

Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yousaf Murtaza Rind & Muhammad Haseeb Raza & Muhammad Zubair & Muhammad Qasim Mehmood & Yehia Massoud, 2023. "Smart Energy Meters for Smart Grids, an Internet of Things Perspective," Energies, MDPI, vol. 16(4), pages 1-35, February.
  2. Xie, Jiahang & Yang, Rufan & Hui, Shu-Yuen Ron & Nguyen, Hung D., 2024. "Dual Digital Twin: Cloud–edge collaboration with Lyapunov-based incremental learning in EV batteries," Applied Energy, Elsevier, vol. 355(C).
  3. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
  4. Ge Zhang & Songyang Zhu & Xiaoqing Bai, 2022. "Federated Learning-Based Multi-Energy Load Forecasting Method Using CNN-Attention-LSTM Model," Sustainability, MDPI, vol. 14(19), pages 1-14, October.
  5. Athanasiadis, C.L. & Papadopoulos, T.A. & Kryonidis, G.C. & Doukas, D.I., 2024. "A review of distribution network applications based on smart meter data analytics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
  6. Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
  7. Song, Cairong & Yang, Haidong & Cai, Jianyang & Yang, Pan & Bao, Hao & Xu, Kangkang & Meng, Xian-Bing, 2024. "Multi-energy load forecasting via hierarchical multi-task learning and spatiotemporal attention," Applied Energy, Elsevier, vol. 373(C).
  8. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
  9. Wadim Strielkowski & Andrey Vlasov & Kirill Selivanov & Konstantin Muraviev & Vadim Shakhnov, 2023. "Prospects and Challenges of the Machine Learning and Data-Driven Methods for the Predictive Analysis of Power Systems: A Review," Energies, MDPI, vol. 16(10), pages 1-31, May.
  10. Graça Gomes, J. & Xu, H.J. & Yang, Q. & Zhao, C.Y., 2021. "An optimization study on a typical renewable microgrid energy system with energy storage," Energy, Elsevier, vol. 234(C).
  11. Natei Ermias Benti & Mesfin Diro Chaka & Addisu Gezahegn Semie, 2023. "Forecasting Renewable Energy Generation with Machine Learning and Deep Learning: Current Advances and Future Prospects," Sustainability, MDPI, vol. 15(9), pages 1-33, April.
  12. Yongjie Yang & Yulong Li & Yan Cai & Hui Tang & Peng Xu, 2024. "Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System," Energies, MDPI, vol. 17(15), pages 1-20, July.
  13. Dai, Xiaoran & Liu, Guo-Ping & Hu, Wenshan, 2023. "An online-learning-enabled self-attention-based model for ultra-short-term wind power forecasting," Energy, Elsevier, vol. 272(C).
  14. Islam, Md. Zahidul & Lin, Yuzhang & Vokkarane, Vinod M. & Yu, Nanpeng, 2023. "Robust learning-based real-time load estimation using sparsely deployed smart meters with high reporting rates," Applied Energy, Elsevier, vol. 352(C).
  15. Yundong Gu & Dongfen Ma & Jiawei Cui & Zhenhua Li & Yaqi Chen, 2022. "Variable-Weighted Ensemble Forecasting of Short-Term Power Load Based on Factor Space Theory," Annals of Data Science, Springer, vol. 9(3), pages 485-501, June.
  16. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
  17. Jujie Wang & Zhenzhen Zhuang, 2023. "A novel cluster based multi-index nonlinear ensemble framework for carbon price forecasting," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6225-6247, July.
  18. Raiden Skala & Mohamed Ahmed T. A. Elgalhud & Katarina Grolinger & Syed Mir, 2023. "Interval Load Forecasting for Individual Households in the Presence of Electric Vehicle Charging," Energies, MDPI, vol. 16(10), pages 1-21, May.
  19. Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
  20. Zhang, Rongquan & Bu, Siqi & Li, Gangqiang, 2024. "Multi-market P2P trading of cooling–heating-power-hydrogen integrated energy systems: An equilibrium-heuristic online prediction optimization approach," Applied Energy, Elsevier, vol. 367(C).
  21. Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
  22. Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
  23. Fachrizal Aksan & Yang Li & Vishnu Suresh & Przemysław Janik, 2023. "Multistep Forecasting of Power Flow Based on LSTM Autoencoder: A Study Case in Regional Grid Cluster Proposal," Energies, MDPI, vol. 16(13), pages 1-20, June.
  24. Fujimoto, Yu & Fujita, Megumi & Hayashi, Yasuhiro, 2021. "Deep reservoir architecture for short-term residential load forecasting: An online learning scheme for edge computing," Applied Energy, Elsevier, vol. 298(C).
  25. Jonathan Gumz & Diego Castro Fettermann & Enzo Morosini Frazzon & Mirko Kück, 2022. "Using Industry 4.0’s Big Data and IoT to Perform Feature-Based and Past Data-Based Energy Consumption Predictions," Sustainability, MDPI, vol. 14(20), pages 1-34, October.
  26. Zhang, Jialun & Peng, Jimmy Chih-Hsien & Hug, Gabriela, 2024. "Wireless AMI planning for guaranteed observability of medium voltage distribution grid," Applied Energy, Elsevier, vol. 370(C).
  27. Kong, Xiangyu & Wang, Zhengtao & Liu, Chao & Zhang, Delong & Gao, Hongchao, 2023. "Refined peak shaving potential assessment and differentiated decision-making method for user load in virtual power plants," Applied Energy, Elsevier, vol. 334(C).
  28. Ping Ma & Shuhui Cui & Mingshuai Chen & Shengzhe Zhou & Kai Wang, 2023. "Review of Family-Level Short-Term Load Forecasting and Its Application in Household Energy Management System," Energies, MDPI, vol. 16(15), pages 1-17, August.
  29. Aydin Zaboli & Swetha Rani Kasimalla & Kuchan Park & Younggi Hong & Junho Hong, 2024. "A Comprehensive Review of Behind-the-Meter Distributed Energy Resources Load Forecasting: Models, Challenges, and Emerging Technologies," Energies, MDPI, vol. 17(11), pages 1-27, May.
  30. Stefan Ungureanu & Vasile Topa & Andrei Cristinel Cziker, 2021. "Analysis for Non-Residential Short-Term Load Forecasting Using Machine Learning and Statistical Methods with Financial Impact on the Power Market," Energies, MDPI, vol. 14(21), pages 1-26, October.
  31. Qin Chen & Komla Agbenyo Folly, 2022. "Application of Artificial Intelligence for EV Charging and Discharging Scheduling and Dynamic Pricing: A Review," Energies, MDPI, vol. 16(1), pages 1-26, December.
  32. Vasileios Laitsos & Georgios Vontzos & Paschalis Paraschoudis & Eleftherios Tsampasis & Dimitrios Bargiotas & Lefteri H. Tsoukalas, 2024. "The State of the Art Electricity Load and Price Forecasting for the Modern Wholesale Electricity Market," Energies, MDPI, vol. 17(22), pages 1-37, November.
  33. Chen, Siliang & Ge, Wei & Liang, Xinbin & Jin, Xinqiao & Du, Zhimin, 2024. "Lifelong learning with deep conditional generative replay for dynamic and adaptive modeling towards net zero emissions target in building energy system," Applied Energy, Elsevier, vol. 353(PB).
  34. Diogo M. F. Izidio & Paulo S. G. de Mattos Neto & Luciano Barbosa & João F. L. de Oliveira & Manoel Henrique da Nóbrega Marinho & Guilherme Ferretti Rissi, 2021. "Evolutionary Hybrid System for Energy Consumption Forecasting for Smart Meters," Energies, MDPI, vol. 14(7), pages 1-19, March.
  35. Türkoğlu, A. Selim & Erkmen, Burcu & Eren, Yavuz & Erdinç, Ozan & Küçükdemiral, İbrahim, 2024. "Integrated Approaches in Resilient Hierarchical Load Forecasting via TCN and Optimal Valley Filling Based Demand Response Application," Applied Energy, Elsevier, vol. 360(C).
  36. Fachrizal Aksan & Vishnu Suresh & Przemysław Janik & Tomasz Sikorski, 2023. "Load Forecasting for the Laser Metal Processing Industry Using VMD and Hybrid Deep Learning Models," Energies, MDPI, vol. 16(14), pages 1-24, July.
  37. Luo, Xing & Zhang, Dongxiao, 2023. "A cascaded deep learning framework for photovoltaic power forecasting with multi-fidelity inputs," Energy, Elsevier, vol. 268(C).
  38. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
  39. Deyslen Mariano-Hernández & Luis Hernández-Callejo & Martín Solís & Angel Zorita-Lamadrid & Oscar Duque-Pérez & Luis Gonzalez-Morales & Felix Santos García & Alvaro Jaramillo-Duque & Adalberto Ospino-, 2022. "Analysis of the Integration of Drift Detection Methods in Learning Algorithms for Electrical Consumption Forecasting in Smart Buildings," Sustainability, MDPI, vol. 14(10), pages 1-14, May.
  40. Antić, Tomislav & Capuder, Tomislav, 2024. "A geographic information system-based modelling, analysing and visualising of low voltage networks: The potential of demand time-shifting in the power quality improvement," Applied Energy, Elsevier, vol. 353(PA).
  41. Elizabeth Michael, Neethu & Hasan, Shazia & Al-Durra, Ahmed & Mishra, Manohar, 2022. "Short-term solar irradiance forecasting based on a novel Bayesian optimized deep Long Short-Term Memory neural network," Applied Energy, Elsevier, vol. 324(C).
  42. Salahuddin Khan, 2023. "Short-Term Electricity Load Forecasting Using a New Intelligence-Based Application," Sustainability, MDPI, vol. 15(16), pages 1-12, August.
  43. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
  44. Ahajjam, Mohamed Aymane & Bonilla Licea, Daniel & Ghogho, Mounir & Kobbane, Abdellatif, 2022. "Experimental investigation of variational mode decomposition and deep learning for short-term multi-horizon residential electric load forecasting," Applied Energy, Elsevier, vol. 326(C).
  45. Rizeakos, V. & Bachoumis, A. & Andriopoulos, N. & Birbas, M. & Birbas, A., 2023. "Deep learning-based application for fault location identification and type classification in active distribution grids," Applied Energy, Elsevier, vol. 338(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.