IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12311-d1215835.html
   My bibliography  Save this article

Short-Term Electricity Load Forecasting Using a New Intelligence-Based Application

Author

Listed:
  • Salahuddin Khan

    (College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia)

Abstract

Electrical load forecasting plays a crucial role in planning and operating power plants for utility factories, as well as for policymakers seeking to devise reliable and efficient energy infrastructure. Load forecasting can be categorized into three types: long-term, mid-term, and short-term. Various models, including artificial intelligence and conventional and mixed models, can be used for short-term load forecasting. Electricity load forecasting is particularly important in countries with restructured electricity markets. The accuracy of short-term load forecasting is crucial for the efficient management of electric systems. Precise forecasting offers advantages for future projects and economic activities of power system operators. In this study, a novel integrated model for short-term load forecasting has been developed, which combines the wavelet transform decomposition (WTD) model, a radial basis function network, and the Thermal Exchange Optimization (TEO) algorithm. The performance of this model was evaluated in two diverse deregulated power markets: the Pennsylvania-New Jersey-Maryland electricity market and the Spanish electricity market. The obtained results are compared with various acceptable standard forecasting models.

Suggested Citation

  • Salahuddin Khan, 2023. "Short-Term Electricity Load Forecasting Using a New Intelligence-Based Application," Sustainability, MDPI, vol. 15(16), pages 1-12, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12311-:d:1215835
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12311/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12311/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    2. Haeran Cho & Yannig Goude & Xavier Brossat & Qiwei Yao, 2013. "Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 7-21, March.
    3. Li, Lechen & Meinrenken, Christoph J. & Modi, Vijay & Culligan, Patricia J., 2021. "Short-term apartment-level load forecasting using a modified neural network with selected auto-regressive features," Applied Energy, Elsevier, vol. 287(C).
    4. Simon N. Wood & Yannig Goude & Simon Shaw, 2015. "Generalized additive models for large data sets," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 64(1), pages 139-155, January.
    5. Heydari, Azim & Majidi Nezhad, Meysam & Pirshayan, Elmira & Astiaso Garcia, Davide & Keynia, Farshid & De Santoli, Livio, 2020. "Short-term electricity price and load forecasting in isolated power grids based on composite neural network and gravitational search optimization algorithm," Applied Energy, Elsevier, vol. 277(C).
    6. Antoniadis, Anestis & Brossat, Xavier & Cugliari, Jairo & Poggi, Jean-Michel, 2016. "A prediction interval for a function-valued forecast model: Application to load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 939-947.
    7. Lloyd, James Robert, 2014. "GEFCom2012 hierarchical load forecasting: Gradient boosting machines and Gaussian processes," International Journal of Forecasting, Elsevier, vol. 30(2), pages 369-374.
    8. Chitalia, Gopal & Pipattanasomporn, Manisa & Garg, Vishal & Rahman, Saifur, 2020. "Robust short-term electrical load forecasting framework for commercial buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 278(C).
    9. Fekri, Mohammad Navid & Patel, Harsh & Grolinger, Katarina & Sharma, Vinay, 2021. "Deep learning for load forecasting with smart meter data: Online Adaptive Recurrent Neural Network," Applied Energy, Elsevier, vol. 282(PA).
    10. Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
    2. Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
    3. Bessec, Marie & Fouquau, Julien, 2018. "Short-run electricity load forecasting with combinations of stationary wavelet transforms," European Journal of Operational Research, Elsevier, vol. 264(1), pages 149-164.
    4. Diogo M. F. Izidio & Paulo S. G. de Mattos Neto & Luciano Barbosa & João F. L. de Oliveira & Manoel Henrique da Nóbrega Marinho & Guilherme Ferretti Rissi, 2021. "Evolutionary Hybrid System for Energy Consumption Forecasting for Smart Meters," Energies, MDPI, vol. 14(7), pages 1-19, March.
    5. Suqi Zhang & Ningjing Zhang & Ziqi Zhang & Ying Chen, 2022. "Electric Power Load Forecasting Method Based on a Support Vector Machine Optimized by the Improved Seagull Optimization Algorithm," Energies, MDPI, vol. 15(23), pages 1-17, December.
    6. repec:cte:wsrepe:ws1506 is not listed on IDEAS
    7. repec:hum:wpaper:sfb649dp2014-030 is not listed on IDEAS
    8. Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    9. Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
    10. Zhang, Jialun & Peng, Jimmy Chih-Hsien & Hug, Gabriela, 2024. "Wireless AMI planning for guaranteed observability of medium voltage distribution grid," Applied Energy, Elsevier, vol. 370(C).
    11. Lozinskaia, Agata & Redkina, Anastasiia & Shenkman, Evgeniia, 2020. "Electricity consumption forecasting for integrated power system with seasonal patterns," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 60, pages 5-25.
    12. Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," LSE Research Online Documents on Economics 120774, London School of Economics and Political Science, LSE Library.
    13. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    14. Moral-Carcedo, Julián & Pérez-García, Julián, 2017. "Integrating long-term economic scenarios into peak load forecasting: An application to Spain," Energy, Elsevier, vol. 140(P1), pages 682-695.
    15. Jahanpour, Ehsan & Ko, Hoo Sang & Nof, Shimon Y., 2016. "Collaboration protocols for sustainable wind energy distribution networks," International Journal of Production Economics, Elsevier, vol. 182(C), pages 496-507.
    16. Ping Ma & Shuhui Cui & Mingshuai Chen & Shengzhe Zhou & Kai Wang, 2023. "Review of Family-Level Short-Term Load Forecasting and Its Application in Household Energy Management System," Energies, MDPI, vol. 16(15), pages 1-17, August.
    17. Nedellec, Raphael & Cugliari, Jairo & Goude, Yannig, 2014. "GEFCom2012: Electric load forecasting and backcasting with semi-parametric models," International Journal of Forecasting, Elsevier, vol. 30(2), pages 375-381.
    18. Fang, Qin & Guo, Shaojun & Qiao, Xinghao, 2022. "Finite sample theory for high-dimensional functional/scalar time series with applications," LSE Research Online Documents on Economics 114637, London School of Economics and Political Science, LSE Library.
    19. Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
    20. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    21. Souhaib Ben Taieb & Raphael Huser & Rob J. Hyndman & Marc G. Genton, 2015. "Probabilistic time series forecasting with boosted additive models: an application to smart meter data," Monash Econometrics and Business Statistics Working Papers 12/15, Monash University, Department of Econometrics and Business Statistics.
    22. Guo, Shaojun & Qiao, Xinghao, 2023. "On consistency and sparsity for high-dimensional functional time series with application to autoregressions," LSE Research Online Documents on Economics 114638, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12311-:d:1215835. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.