IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v252y2019ic47.html
   My bibliography  Save this item

Degradation model of proton exchange membrane fuel cell based on a novel hybrid method

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
  2. Desantes, J.M. & Novella, R. & Pla, B. & Lopez-Juarez, M., 2022. "A modeling framework for predicting the effect of the operating conditions and component sizing on fuel cell degradation and performance for automotive applications," Applied Energy, Elsevier, vol. 317(C).
  3. Zhang, Chu & Hu, Haowen & Ji, Jie & Liu, Kang & Xia, Xin & Nazir, Muhammad Shahzad & Peng, Tian, 2023. "An evolutionary stacked generalization model based on deep learning and improved grasshopper optimization algorithm for predicting the remaining useful life of PEMFC," Applied Energy, Elsevier, vol. 330(PA).
  4. Deng, Zhihua & Chan, Siew Hwa & Chen, Qihong & Liu, Hao & Zhang, Liyan & Zhou, Keliang & Tong, Sirui & Fu, Zhichao, 2023. "Efficient degradation prediction of PEMFCs using ELM-AE based on fuzzy extension broad learning system," Applied Energy, Elsevier, vol. 331(C).
  5. Kregar, Ambrož & Tavčar, Gregor & Kravos, Andraž & Katrašnik, Tomaž, 2020. "Predictive system-level modeling framework for transient operation and cathode platinum degradation of high temperature proton exchange membrane fuel cells☆," Applied Energy, Elsevier, vol. 263(C).
  6. Zhang, Zhendong & Wang, Ya-Xiong & He, Hongwen & Sun, Fengchun, 2021. "A short- and long-term prognostic associating with remaining useful life estimation for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 304(C).
  7. Deng, Zhihua & Chen, Qihong & Zhang, Liyan & Zong, Yi & Zhou, Keliang & Fu, Zhichao, 2020. "Control oriented data driven linear parameter varying model for proton exchange membrane fuel cell systems," Applied Energy, Elsevier, vol. 277(C).
  8. Tian, Lei & Gao, Yan & Yang, Haiyu & Wang, Renkang, 2025. "Multi-scenario long-term degradation prediction of PEMFC based on generative inference informer model," Applied Energy, Elsevier, vol. 377(PA).
  9. Guarino, Antonio & Trinchero, Riccardo & Canavero, Flavio & Spagnuolo, Giovanni, 2022. "A fast fuel cell parametric identification approach based on machine learning inverse models," Energy, Elsevier, vol. 239(PC).
  10. Zhuang Tian & Zheng Wei & Jinhui Wang & Yinxiang Wang & Yuwei Lei & Ping Hu & S. M. Muyeen & Daming Zhou, 2023. "Research Progress on Aging Prediction Methods for Fuel Cells: Mechanism, Methods, and Evaluation Criteria," Energies, MDPI, vol. 16(23), pages 1-21, November.
  11. Jinquan, Guo & Hongwen, He & Jianwei, Li & Qingwu, Liu, 2022. "Driving information process system-based real-time energy management for the fuel cell bus to minimize fuel cell engine aging and energy consumption," Energy, Elsevier, vol. 248(C).
  12. Abdeldjalil Djouahi & Belkhir Negrou & Boubakeur Rouabah & Abdelbasset Mahboub & Mohamed Mahmoud Samy, 2023. "Optimal Sizing of Battery and Super-Capacitor Based on the MOPSO Technique via a New FC-HEV Application," Energies, MDPI, vol. 16(9), pages 1-18, May.
  13. Badji, Abderrezak & Abdeslam, Djaffar Ould & Chabane, Djafar & Benamrouche, Nacereddine, 2022. "Real-time implementation of improved power frequency approach based energy management of fuel cell electric vehicle considering storage limitations," Energy, Elsevier, vol. 249(C).
  14. Quan, Shengwei & He, Hongwen & Chen, Jinzhou & Zhang, Zhendong & Han, Ruoyan & Wang, Ya-Xiong, 2023. "Health-aware model predictive energy management for fuel cell electric vehicle based on hybrid modeling method," Energy, Elsevier, vol. 278(PA).
  15. Tao, Zihan & Zhang, Chu & Xiong, Jinlin & Hu, Haowen & Ji, Jie & Peng, Tian & Nazir, Muhammad Shahzad, 2023. "Evolutionary gate recurrent unit coupling convolutional neural network and improved manta ray foraging optimization algorithm for performance degradation prediction of PEMFC," Applied Energy, Elsevier, vol. 336(C).
  16. Xin Fu & Zengbin Fan & Shangfeng Jiang & Ashley Fly & Rui Chen & Yong Han & An Xie, 2024. "Durability Oriented Fuel Cell Electric Vehicle Energy Management Strategies Based on Vehicle Drive Cycles," Energies, MDPI, vol. 17(22), pages 1-17, November.
  17. Zou, Wei & Froning, Dieter & Shi, Yan & Lehnert, Werner, 2021. "An online adaptive model for the nonlinear dynamics of fuel cell voltage," Applied Energy, Elsevier, vol. 288(C).
  18. Zou, Weitao & Li, Jianwei & Yang, Qingqing & Wan, Xinming & He, Yuntang & Lan, Hao, 2023. "A real-time energy management approach with fuel cell and battery competition-synergy control for the fuel cell vehicle," Applied Energy, Elsevier, vol. 334(C).
  19. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
  20. Song, Ke & Ding, Yuhang & Hu, Xiao & Xu, Hongjie & Wang, Yimin & Cao, Jing, 2021. "Degradation adaptive energy management strategy using fuel cell state-of-health for fuel economy improvement of hybrid electric vehicle," Applied Energy, Elsevier, vol. 285(C).
  21. Liu, Hao & Chen, Jian & Hissel, Daniel & Lu, Jianguo & Hou, Ming & Shao, Zhigang, 2020. "Prognostics methods and degradation indexes of proton exchange membrane fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
  22. Aihua Tang & Yuanhang Yang & Quanqing Yu & Zhigang Zhang & Lin Yang, 2022. "A Review of Life Prediction Methods for PEMFCs in Electric Vehicles," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
  23. Liu, Ze & Xu, Sichuan & Zhao, Honghui & Wang, Yupeng, 2022. "Durability estimation and short-term voltage degradation forecasting of vehicle PEMFC system: Development and evaluation of machine learning models," Applied Energy, Elsevier, vol. 326(C).
  24. Zili Wang & Guodong Yi & Shaoju Zhang, 2021. "An Improved Fuzzy PID Control Method Considering Hydrogen Fuel Cell Voltage-Output Characteristics for a Hydrogen Vehicle Power System," Energies, MDPI, vol. 14(19), pages 1-18, September.
  25. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
  26. Chen, Kui & Badji, Abderrezak & Laghrouche, Salah & Djerdir, Abdesslem, 2022. "Polymer electrolyte membrane fuel cells degradation prediction using multi-kernel relevance vector regression and whale optimization algorithm," Applied Energy, Elsevier, vol. 318(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.