IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v230y2018icp471-485.html
   My bibliography  Save this item

Energy flexible building through smart demand-side management and latent heat storage

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control for Demand- and Market-Responsive building energy management by leveraging active latent heat storage," Applied Energy, Elsevier, vol. 327(C).
  2. Yunbo Yang & Rongling Li & Tao Huang, 2020. "Smart Meter Data Analysis of a Building Cluster for Heating Load Profile Quantification and Peak Load Shifting," Energies, MDPI, vol. 13(17), pages 1-20, August.
  3. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  4. Zihao Li & Daniel Friedrich & Gareth P. Harrison, 2020. "Demand Forecasting for a Mixed-Use Building Using Agent-Schedule Information with a Data-Driven Model," Energies, MDPI, vol. 13(4), pages 1-20, February.
  5. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
  6. Yan, Chengchu & Wang, Fengling & Pan, Yan & Shan, Kui & Kosonen, Risto, 2020. "A multi-timescale cold storage system within energy flexible buildings for power balance management of smart grids," Renewable Energy, Elsevier, vol. 161(C), pages 626-634.
  7. Feng, Penghui & Liu, Yang & Ayub, Iqra & Wu, Zhen & Yang, Fusheng & Zhang, Zaoxiao, 2019. "Techno-economic analysis of screening metal hydride pairs for a 910 MWhth thermal energy storage system," Applied Energy, Elsevier, vol. 242(C), pages 148-156.
  8. Zhou, Yuekuan & Zheng, Siqian, 2020. "Machine-learning based hybrid demand-side controller for high-rise office buildings with high energy flexibilities," Applied Energy, Elsevier, vol. 262(C).
  9. Tang, Hong & Wang, Shengwei & Li, Hangxin, 2021. "Flexibility categorization, sources, capabilities and technologies for energy-flexible and grid-responsive buildings: State-of-the-art and future perspective," Energy, Elsevier, vol. 219(C).
  10. Lizana, Jesus & de-Borja-Torrejon, Manuel & Barrios-Padura, Angela & Auer, Thomas & Chacartegui, Ricardo, 2019. "Passive cooling through phase change materials in buildings. A critical study of implementation alternatives," Applied Energy, Elsevier, vol. 254(C).
  11. Yin, Linfei & Qiu, Yao, 2022. "Long-term price guidance mechanism of flexible energy service providers based on stochastic differential methods," Energy, Elsevier, vol. 238(PB).
  12. Tao, Y.B. & Liu, Y.K. & He, Y.L., 2019. "Effect of carbon nanomaterial on latent heat storage performance of carbonate salts in horizontal concentric tube," Energy, Elsevier, vol. 185(C), pages 994-1004.
  13. Wenhe Zhou & Bin Wang & Meng Wang & Yuying Chen, 2022. "Performance Analysis of the Coupled Heating System of the Air-Source Heat Pump, the Energy Accumulator and the Water-Source Heat Pump," Energies, MDPI, vol. 15(19), pages 1-11, October.
  14. Luo, X.J. & Fong, K.F., 2019. "Development of integrated demand and supply side management strategy of multi-energy system for residential building application," Applied Energy, Elsevier, vol. 242(C), pages 570-587.
  15. Zhang, Yichi & Johansson, Pär & Kalagasidis, Angela Sasic, 2021. "Techno-economic assessment of thermal energy storage technologies for demand-side management in low-temperature individual heating systems," Energy, Elsevier, vol. 236(C).
  16. Zhou, Xinlei & Xue, Shan & Du, Han & Ma, Zhenjun, 2023. "Optimization of building demand flexibility using reinforcement learning and rule-based expert systems," Applied Energy, Elsevier, vol. 350(C).
  17. John Clauß & Sebastian Stinner & Christian Solli & Karen Byskov Lindberg & Henrik Madsen & Laurent Georges, 2019. "Evaluation Method for the Hourly Average CO 2eq. Intensity of the Electricity Mix and Its Application to the Demand Response of Residential Heating," Energies, MDPI, vol. 12(7), pages 1-25, April.
  18. Ren, Haoshan & Sun, Yongjun & Albdoor, Ahmed K. & Tyagi, V.V. & Pandey, A.K. & Ma, Zhenjun, 2021. "Improving energy flexibility of a net-zero energy house using a solar-assisted air conditioning system with thermal energy storage and demand-side management," Applied Energy, Elsevier, vol. 285(C).
  19. Luís Sousa Rodrigues & Daniel Lemos Marques & Jorge Augusto Ferreira & Vítor António Ferreira Costa & Nelson Dias Martins & Fernando José Neto Da Silva, 2022. "The Load Shifting Potential of Domestic Refrigerators in Smart Grids: A Comprehensive Review," Energies, MDPI, vol. 15(20), pages 1-36, October.
  20. Lizana, Jesus & Halloran, Claire E. & Wheeler, Scot & Amghar, Nabil & Renaldi, Renaldi & Killendahl, Markus & Perez-Maqueda, Luis A. & McCulloch, Malcolm & Chacartegui, Ricardo, 2023. "A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification," Energy, Elsevier, vol. 262(PA).
  21. Zahra Fallahi & Gregor P. Henze, 2019. "Interactive Buildings: A Review," Sustainability, MDPI, vol. 11(14), pages 1-26, July.
  22. Liu, Mingzhe & Heiselberg, Per, 2019. "Energy flexibility of a nearly zero-energy building with weather predictive control on a convective building energy system and evaluated with different metrics," Applied Energy, Elsevier, vol. 233, pages 764-775.
  23. Arteconi, Alessia & Mugnini, Alice & Polonara, Fabio, 2019. "Energy flexible buildings: A methodology for rating the flexibility performance of buildings with electric heating and cooling systems," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  24. Yıldız, Çağatay & Seçilmiş, Mustafa & Arıcı, Müslüm & Mert, Mehmet Selçuk & Nižetić, Sandro & Karabay, Hasan, 2023. "An experimental study on a solar-assisted heat pump incorporated with PCM based thermal energy storage unit," Energy, Elsevier, vol. 278(PB).
  25. Xu, Tianhao & Gunasekara, Saman Nimali & Chiu, Justin Ningwei & Palm, Björn & Sawalha, Samer, 2020. "Thermal behavior of a sodium acetate trihydrate-based PCM: T-history and full-scale tests," Applied Energy, Elsevier, vol. 261(C).
  26. Mina Farmanbar & Kiyan Parham & Øystein Arild & Chunming Rong, 2019. "A Widespread Review of Smart Grids Towards Smart Cities," Energies, MDPI, vol. 12(23), pages 1-18, November.
  27. Jarvinen, J. & Goldsworthy, M. & White, S. & Pudney, P. & Belusko, M. & Bruno, F., 2021. "Evaluating the utility of passive thermal storage as an energy storage system on the Australian energy market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
  28. Eerika Janhunen & Niina Leskinen & Seppo Junnila, 2020. "The Economic Viability of a Progressive Smart Building System with Power Storage," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
  29. Marco Massano & Edoardo Patti & Enrico Macii & Andrea Acquaviva & Lorenzo Bottaccioli, 2020. "An Online Grey-Box Model Based on Unscented Kalman Filter to Predict Temperature Profiles in Smart Buildings," Energies, MDPI, vol. 13(8), pages 1-17, April.
  30. Keon Baek & Sehyun Kim & Eunjung Lee & Yongjun Cho & Jinho Kim, 2021. "Data-Driven Evaluation for Demand Flexibility of Segmented Electric Vehicle Chargers in the Korean Residential Sector," Energies, MDPI, vol. 14(4), pages 1-10, February.
  31. Qiwei Li & Jiaxuan Zhang & Jiahui Chen & Xi Lu, 2019. "Reflection on opportunities for high penetration of renewable energy in China," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.