IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v196y2017icp289-302.html
   My bibliography  Save this item

Voltage fault diagnosis and prognosis of battery systems based on entropy and Z-score for electric vehicles

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Da Li & Zhaosheng Zhang & Peng Liu & Zhenpo Wang, 2019. "DBSCAN-Based Thermal Runaway Diagnosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 12(15), pages 1-15, August.
  2. Xinwei Cong & Caiping Zhang & Jiuchun Jiang & Weige Zhang & Yan Jiang & Linjing Zhang, 2021. "A Comprehensive Signal-Based Fault Diagnosis Method for Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 14(5), pages 1-21, February.
  3. Sun, Zhenyu & Han, Yang & Wang, Zhenpo & Chen, Yong & Liu, Peng & Qin, Zian & Zhang, Zhaosheng & Wu, Zhiqiang & Song, Chunbao, 2022. "Detection of voltage fault in the battery system of electric vehicles using statistical analysis," Applied Energy, Elsevier, vol. 307(C).
  4. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean, 2023. "Online diagnosis and prediction of power battery voltage comprehensive faults for electric vehicles based on multi-parameter characterization and improved K-means method," Energy, Elsevier, vol. 283(C).
  5. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Liu, Yonggang & Zhang, Yuanjian, 2023. "Multi-step ahead voltage prediction and voltage fault diagnosis based on gated recurrent unit neural network and incremental training," Energy, Elsevier, vol. 266(C).
  6. Hong, Jichao & Wang, Zhenpo & Chen, Wen & Yao, Yongtao, 2019. "Synchronous multi-parameter prediction of battery systems on electric vehicles using long short-term memory networks," Applied Energy, Elsevier, vol. 254(C).
  7. Jichao Hong & Zhenpo Wang & Peng Liu, 2017. "Big-Data-Based Thermal Runaway Prognosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1, July.
  8. Hong, Jichao & Wang, Zhenpo & Yao, Yongtao, 2019. "Fault prognosis of battery system based on accurate voltage abnormity prognosis using long short-term memory neural networks," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  9. Jiang, Lulu & Deng, Zhongwei & Tang, Xiaolin & Hu, Lin & Lin, Xianke & Hu, Xiaosong, 2021. "Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data," Energy, Elsevier, vol. 234(C).
  10. Kang, Yongzhe & Duan, Bin & Zhou, Zhongkai & Shang, Yunlong & Zhang, Chenghui, 2020. "Online multi-fault detection and diagnosis for battery packs in electric vehicles," Applied Energy, Elsevier, vol. 259(C).
  11. Yang, Qifan & Sun, Jinlei & Kang, Yongzhe & Ma, Hongzhong & Duan, Dawei, 2023. "Internal short circuit detection and evaluation in battery packs based on transformation matrix and an improved state-space model," Energy, Elsevier, vol. 276(C).
  12. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  13. Qiao, Dongdong & Wei, Xuezhe & Fan, Wenjun & Jiang, Bo & Lai, Xin & Zheng, Yuejiu & Tang, Xiaolin & Dai, Haifeng, 2022. "Toward safe carbon–neutral transportation: Battery internal short circuit diagnosis based on cloud data for electric vehicles," Applied Energy, Elsevier, vol. 317(C).
  14. Sapountzoglou, Nikolaos & Lago, Jesus & De Schutter, Bart & Raison, Bertrand, 2020. "A generalizable and sensor-independent deep learning method for fault detection and location in low-voltage distribution grids," Applied Energy, Elsevier, vol. 276(C).
  15. Jiangong Zhu & Yixiu Wang & Yuan Huang & R. Bhushan Gopaluni & Yankai Cao & Michael Heere & Martin J. Mühlbauer & Liuda Mereacre & Haifeng Dai & Xinhua Liu & Anatoliy Senyshyn & Xuezhe Wei & Michael K, 2022. "Data-driven capacity estimation of commercial lithium-ion batteries from voltage relaxation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
  16. Xiong, Rui & Sun, Wanzhou & Yu, Quanqing & Sun, Fengchun, 2020. "Research progress, challenges and prospects of fault diagnosis on battery system of electric vehicles," Applied Energy, Elsevier, vol. 279(C).
  17. Hong, Jichao & Wang, Zhenpo & Zhang, Tiezhu & Yin, Huaixian & Zhang, Hongxin & Huo, Wei & Zhang, Yi & Li, Yuanyuan, 2019. "Research on integration simulation and balance control of a novel load isolated pure electric driving system," Energy, Elsevier, vol. 189(C).
  18. Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.
  19. Huang, Peifeng & Zeng, Ganghui & He, Yanyun & Liu, Shoutong & Li, Eric & Bai, Zhonghao, 2023. "Damage evolution mechanism and early warning using long short-term memory networks for battery slight overcharge cycles," Renewable Energy, Elsevier, vol. 217(C).
  20. Yao, Lei & Dai, Huilin & Xiao, Yanqiu & Zhao, Changsheng & Fei, Zhigen & Cui, Guangzhen & Zhang, Longhai, 2024. "An intelligent diagnosis method for battery pack connection faults based on multiple correlation analysis and adaptive fusion decision-making," Energy, Elsevier, vol. 306(C).
  21. Zhang, Shuzhi & Jiang, Shiyong & Wang, Hongxia & Zhang, Xiongwen, 2022. "A novel dual time-scale voltage sensor fault detection and isolation method for series-connected lithium-ion battery pack," Applied Energy, Elsevier, vol. 322(C).
  22. Ma, Mina & Wang, Yu & Duan, Qiangling & Wu, Tangqin & Sun, Jinhua & Wang, Qingsong, 2018. "Fault detection of the connection of lithium-ion power batteries in series for electric vehicles based on statistical analysis," Energy, Elsevier, vol. 164(C), pages 745-756.
  23. Balakumar Balasingam & Mostafa Ahmed & Krishna Pattipati, 2020. "Battery Management Systems—Challenges and Some Solutions," Energies, MDPI, vol. 13(11), pages 1-19, June.
  24. Peng Liu & Zhenyu Sun & Zhenpo Wang & Jin Zhang, 2018. "Entropy-Based Voltage Fault Diagnosis of Battery Systems for Electric Vehicles," Energies, MDPI, vol. 11(1), pages 1-15, January.
  25. Yao, Lei & Fang, Zhanpeng & Xiao, Yanqiu & Hou, Junjian & Fu, Zhijun, 2021. "An Intelligent Fault Diagnosis Method for Lithium Battery Systems Based on Grid Search Support Vector Machine," Energy, Elsevier, vol. 214(C).
  26. Wang, Bing & Wei, Yi-Ming & Yuan, Xiao-Chen, 2018. "Possible design with equity and responsibility in China’s renewable portfolio standards," Applied Energy, Elsevier, vol. 232(C), pages 685-694.
  27. Li, Da & Zhang, Zhaosheng & Zhou, Litao & Liu, Peng & Wang, Zhenpo & Deng, Junjun, 2022. "Multi-time-step and multi-parameter prediction for real-world proton exchange membrane fuel cell vehicles (PEMFCVs) toward fault prognosis and energy consumption prediction," Applied Energy, Elsevier, vol. 325(C).
  28. Quanqing Yu & Changjiang Wan & Junfu Li & Rui Xiong & Zeyu Chen, 2021. "A Model-Based Sensor Fault Diagnosis Scheme for Batteries in Electric Vehicles," Energies, MDPI, vol. 14(4), pages 1-15, February.
  29. Wang, Cong & Chen, Yunxia & Zhang, Qingyuan & Zhu, Jiaxiao, 2023. "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering," Applied Energy, Elsevier, vol. 336(C).
  30. Fan Zhang & Xiao Zheng & Zixuan Xing & Minghu Wu, 2024. "Fault Diagnosis Method for Lithium-Ion Power Battery Incorporating Multidimensional Fault Features," Energies, MDPI, vol. 17(7), pages 1-21, March.
  31. Liu, Qiquan & Ma, Jian & Zhao, Xuan & Zhang, Kai & Meng, Dean & Jiao, Zhipeng, 2024. "Fault diagnosis of early internal short circuit for power battery systems based on the evolution of the cell charging voltage slope in variable voltage window," Applied Energy, Elsevier, vol. 376(PB).
  32. Bosong Zou & Lisheng Zhang & Xiaoqing Xue & Rui Tan & Pengchang Jiang & Bin Ma & Zehua Song & Wei Hua, 2023. "A Review on the Fault and Defect Diagnosis of Lithium-Ion Battery for Electric Vehicles," Energies, MDPI, vol. 16(14), pages 1-19, July.
  33. Li, Da & Deng, Junjun & Zhang, Zhaosheng & Liu, Peng & Wang, Zhenpo, 2023. "Multi-dimension statistical analysis and selection of safety-representing features for battery pack in real-world electric vehicles," Applied Energy, Elsevier, vol. 343(C).
  34. Jiong Yang & Fanyong Cheng & Maxwell Duodu & Miao Li & Chao Han, 2022. "High-Precision Fault Detection for Electric Vehicle Battery System Based on Bayesian Optimization SVDD," Energies, MDPI, vol. 15(22), pages 1-20, November.
  35. Li, Shuowei & Zhang, Caiping & Du, Jingcai & Zhang, Linjing & Jiang, Yan, 2025. "Feature engineering-driven multi-scale voltage anomaly detection for Lithium-ion batteries in real-world electric vehicles," Applied Energy, Elsevier, vol. 377(PC).
  36. Hong, Jichao & Liang, Fengwei & Chen, Yingjie & Wang, Facheng & Zhang, Xinyang & Li, Kerui & Zhang, Huaqin & Yang, Jingsong & Zhang, Chi & Yang, Haixu & Ma, Shikun & Yang, Qianqian, 2024. "A novel battery abnormality diagnosis method using multi-scale normalized coefficient of variation in real-world vehicles," Energy, Elsevier, vol. 299(C).
  37. Hong, Jichao & Wang, Zhenpo & Qu, Changhui & Zhou, Yangjie & Shan, Tongxin & Zhang, Jinghan & Hou, Yankai, 2022. "Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles," Applied Energy, Elsevier, vol. 321(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.