IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v188y2017icp190-199.html
   My bibliography  Save this item

An innovative approach to enhance methane hydrate formation kinetics with leucine for energy storage application

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Sun, Ningru & Zhang, Ye & Bhattacharjee, Gaurav & Li, Yanjun & Qiu, Nianxiang & Du, Shiyu & Linga, Praveen, 2024. "Seawater-based sII hydrate formation promoted by 1,3-Dioxolane for energy storage," Energy, Elsevier, vol. 286(C).
  2. Zhang, Jianbo & Wang, Zhiyuan & Liu, Shun & Zhang, Weiguo & Yu, Jing & Sun, Baojiang, 2019. "Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  3. Bhattacharjee, Gaurav & Prakash Veluswamy, Hari & Kumar, Rajnish & Linga, Praveen, 2020. "Rapid methane storage via sII hydrates at ambient temperature," Applied Energy, Elsevier, vol. 269(C).
  4. Zhang, Ye & Bhattacharjee, Gaurav & Dharshini Vijayakumar, Mohana & Linga, Praveen, 2022. "Rapid and energy-dense methane hydrate formation at near ambient temperature using 1,3-dioxolane as a dual-function promoter," Applied Energy, Elsevier, vol. 311(C).
  5. Zhang, Qiang & Zheng, Junjie & Zhang, Baoyong & Linga, Praveen, 2021. "Coal mine gas separation of methane via clathrate hydrate process aided by tetrahydrofuran and amino acids," Applied Energy, Elsevier, vol. 287(C).
  6. Wang, Fei & Song, Yuan-Mei & Liu, Guo-Qiang & Guo, Gang & Luo, Sheng-Jun & Guo, Rong-Bo, 2018. "Rapid methane hydrate formation promoted by Ag&SDS-coated nanospheres for energy storage," Applied Energy, Elsevier, vol. 213(C), pages 227-234.
  7. Anatoliy M. Pavlenko, 2020. "Thermodynamic Features of the Intensive Formation of Hydrocarbon Hydrates," Energies, MDPI, vol. 13(13), pages 1-18, July.
  8. Xiao, Peng & Dong, Bao-Can & Li, Jia & Zhang, Hong-Liang & Chen, Guang-Jin & Sun, Chang-Yu & Huang, Xing, 2022. "An approach to highly efficient filtration of methane hydrate slurry for the continuous hydrate production," Energy, Elsevier, vol. 259(C).
  9. Bhattacharjee, Gaurav & Veluswamy, Hari Prakash & Kumar, Rajnish & Linga, Praveen, 2020. "Seawater based mixed methane-THF hydrate formation at ambient temperature conditions," Applied Energy, Elsevier, vol. 271(C).
  10. Takeya, Satoshi & Mimachi, Hiroko & Murayama, Tetsuro, 2018. "Methane storage in water frameworks: Self-preservation of methane hydrate pellets formed from NaCl solutions," Applied Energy, Elsevier, vol. 230(C), pages 86-93.
  11. Mu, Liang & Tan, Qiqi & Li, Xianlong & Zhang, Qingyun & Cui, Qingyan, 2023. "A novel method to store methane by forming hydrate in the high water-oil ratio emulsions," Energy, Elsevier, vol. 264(C).
  12. Wang, Yiwei & Deng, Ye & Guo, Xuqiang & Sun, Qiang & Liu, Aixian & Zhang, Guangqing & Yue, Gang & Yang, Lanying, 2018. "Experimental and modeling investigation on separation of methane from coal seam gas (CSG) using hydrate formation," Energy, Elsevier, vol. 150(C), pages 377-395.
  13. Sandro Hiller & Christian Hartmann & Babette Hebenstreit & Stefan Arzbacher, 2022. "Solidified-Air Energy Storage: Conceptualization and Thermodynamic Analysis," Energies, MDPI, vol. 15(6), pages 1-14, March.
  14. Zhang, Qiang & Zheng, Junjie & Zhang, Baoyong & Linga, Praveen, 2023. "Kinetic evaluation of hydrate-based coalbed methane recovery process promoted by structure II thermodynamic promoters and amino acids," Energy, Elsevier, vol. 274(C).
  15. Xu, Jiuping & Tang, Min & Liu, Tingting & Fan, Lurong, 2024. "Technological paradigm-based development strategy towards natural gas hydrate technology," Energy, Elsevier, vol. 289(C).
  16. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
  17. Zheng, Junjie & Loganathan, Niranjan Kumar & Zhao, Jianzhong & Linga, Praveen, 2019. "Clathrate hydrate formation of CO2/CH4 mixture at room temperature: Application to direct transport of CO2-containing natural gas," Applied Energy, Elsevier, vol. 249(C), pages 190-203.
  18. Song, Yuan-Mei & Wang, Fei & Guo, Gang & Luo, Sheng-Jun & Guo, Rong-Bo, 2018. "Energy-efficient storage of methane in the formed hydrates with metal nanoparticles-grafted carbon nanotubes as promoter," Applied Energy, Elsevier, vol. 224(C), pages 175-183.
  19. Ge, Bin-Bin & Li, Xi-Yue & Zhong, Dong-Liang & Lu, Yi-Yu, 2022. "Investigation of natural gas storage and transportation by gas hydrate formation in the presence of bio-surfactant sulfonated lignin," Energy, Elsevier, vol. 244(PA).
  20. Peng Xiao & Juan-Juan Li & Wan Chen & Wei-Xin Pang & Xiao-Wan Peng & Yan Xie & Xiao-Hui Wang & Chun Deng & Chang-Yu Sun & Bei Liu & Yu-Jie Zhu & Yun-Lei Peng & Praveen Linga & Guang-Jin Chen, 2023. "Enhanced formation of methane hydrate from active ice with high gas uptake," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
  21. Anatoliy M. Pavlenko & Hanna Koshlak, 2021. "Intensification of Gas Hydrate Formation Processes by Renewal of Interfacial Area between Phases," Energies, MDPI, vol. 14(18), pages 1-17, September.
  22. Baek, Seungjun & Ahn, Yun-Ho & Zhang, Junshe & Min, Juwon & Lee, Huen & Lee, Jae W., 2017. "Enhanced methane hydrate formation with cyclopentane hydrate seeds," Applied Energy, Elsevier, vol. 202(C), pages 32-41.
  23. Sa, Jeong-Hoon & Sum, Amadeu K., 2019. "Promoting gas hydrate formation with ice-nucleating additives for hydrate-based applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  24. Kim, Kwangbum & Truong-Lam, Hai Son & Lee, Ju Dong & Sa, Jeong-Hoon, 2023. "Facilitating clathrate hydrates with extremely rapid and high gas uptake for chemical-free carbon capture and methane storage," Energy, Elsevier, vol. 270(C).
  25. Qin, Yue & Shang, Liyan & Lv, Zhenbo & Liu, Zhiming & He, Jianyu & Li, Xu & Binama, Maxime & Yang, Lingyun & Wang, Deyang, 2022. "Rapid formation of methane hydrate in environment-friendly leucine-based complex systems," Energy, Elsevier, vol. 254(PA).
  26. Aminnaji, Morteza & Qureshi, M Fahed & Dashti, Hossein & Hase, Alfred & Mosalanejad, Abdolali & Jahanbakhsh, Amir & Babaei, Masoud & Amiri, Amirpiran & Maroto-Valer, Mercedes, 2024. "CO2 Gas hydrate for carbon capture and storage applications – Part 1," Energy, Elsevier, vol. 300(C).
  27. Veluswamy, Hari Prakash & Kumar, Asheesh & Kumar, Rajnish & Linga, Praveen, 2019. "Investigation of the kinetics of mixed methane hydrate formation kinetics in saline and seawater," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  28. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
  29. Veluswamy, Hari Prakash & Kumar, Asheesh & Premasinghe, Kulesha & Linga, Praveen, 2017. "Effect of guest gas on the mixed tetrahydrofuran hydrate kinetics in a quiescent system," Applied Energy, Elsevier, vol. 207(C), pages 573-583.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.