IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v183y2016icp193-201.html
   My bibliography  Save this item

Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Mohammad Mahdi Forootan & Iman Larki & Rahim Zahedi & Abolfazl Ahmadi, 2022. "Machine Learning and Deep Learning in Energy Systems: A Review," Sustainability, MDPI, vol. 14(8), pages 1-49, April.
  2. Sun-Hye Mun & Younghoon Kwak & Jung-Ho Huh, 2021. "Influence of Complex Occupant Behavior Models on Cooling Energy Usage Analysis," Sustainability, MDPI, vol. 13(3), pages 1-20, January.
  3. Spandagos, Constantine & Tovar Reaños, Miguel Angel & Lynch, Muireann Á., 2023. "Energy poverty prediction and effective targeting for just transitions with machine learning," Energy Economics, Elsevier, vol. 128(C).
  4. Alabi, Tobi Michael & Aghimien, Emmanuel I. & Agbajor, Favour D. & Yang, Zaiyue & Lu, Lin & Adeoye, Adebusola R. & Gopaluni, Bhushan, 2022. "A review on the integrated optimization techniques and machine learning approaches for modeling, prediction, and decision making on integrated energy systems," Renewable Energy, Elsevier, vol. 194(C), pages 822-849.
  5. Alhamwi, Alaa & Medjroubi, Wided & Vogt, Thomas & Agert, Carsten, 2018. "Modelling urban energy requirements using open source data and models," Applied Energy, Elsevier, vol. 231(C), pages 1100-1108.
  6. Kamel, Ehsan & Sheikh, Shaya & Huang, Xueqing, 2020. "Data-driven predictive models for residential building energy use based on the segregation of heating and cooling days," Energy, Elsevier, vol. 206(C).
  7. Xing, Jiangkuan & Wang, Haiou & Luo, Kun & Wang, Shuai & Bai, Yun & Fan, Jianren, 2019. "Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)," Renewable Energy, Elsevier, vol. 136(C), pages 104-114.
  8. Ma, Jun & Cheng, Jack C.P. & Jiang, Feifeng & Chen, Weiwei & Zhang, Jingcheng, 2020. "Analyzing driving factors of land values in urban scale based on big data and non-linear machine learning techniques," Land Use Policy, Elsevier, vol. 94(C).
  9. Ali Movahedi & Sybil Derrible, 2021. "Interrelationships between electricity, gas, and water consumption in large‐scale buildings," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 932-947, August.
  10. Chen, Chien-fei & Xu, Xiaojing & Adua, Lazarus & Briggs, Morgan & Nelson, Hannah, 2022. "Exploring the factors that influence energy use intensity across low-, middle-, and high-income households in the United States," Energy Policy, Elsevier, vol. 168(C).
  11. Li, Xinyi & Yao, Runming, 2020. "A machine-learning-based approach to predict residential annual space heating and cooling loads considering occupant behaviour," Energy, Elsevier, vol. 212(C).
  12. Becker, Raik & Thrän, Daniela, 2017. "Completion of wind turbine data sets for wind integration studies applying random forests and k-nearest neighbors," Applied Energy, Elsevier, vol. 208(C), pages 252-262.
  13. Wang, Endong, 2017. "Decomposing core energy factor structure of U.S. residential buildings through principal component analysis with variable clustering on high-dimensional mixed data," Applied Energy, Elsevier, vol. 203(C), pages 858-873.
  14. Pan, Yue & Zhang, Limao, 2020. "Data-driven estimation of building energy consumption with multi-source heterogeneous data," Applied Energy, Elsevier, vol. 268(C).
  15. Roth, Jonathan & Lim, Benjamin & Jain, Rishee K. & Grueneich, Dian, 2020. "Examining the feasibility of using open data to benchmark building energy usage in cities: A data science and policy perspective," Energy Policy, Elsevier, vol. 139(C).
  16. Zhang, Yan & Teoh, Bak Koon & Zhang, Limao, 2023. "Exploring driving force factors of building energy use and GHG emission using a spatio-temporal regression method," Energy, Elsevier, vol. 269(C).
  17. Peplinski, McKenna & Dilkina, Bistra & Chen, Mo & Silva, Sam J. & Ban-Weiss, George A. & Sanders, Kelly T., 2024. "A machine learning framework to estimate residential electricity demand based on smart meter electricity, climate, building characteristics, and socioeconomic datasets," Applied Energy, Elsevier, vol. 357(C).
  18. Ma, Weiwu & Fang, Song & Liu, Gang & Zhou, Ruoyu, 2017. "Modeling of district load forecasting for distributed energy system," Applied Energy, Elsevier, vol. 204(C), pages 181-205.
  19. Liu, Xue & Ding, Yong & Tang, Hao & Fan, Lingxiao & Lv, Jie, 2022. "Investigating the effects of key drivers on energy consumption of nonresidential buildings: A data-driven approach integrating regularization and quantile regression," Energy, Elsevier, vol. 244(PA).
  20. Thomas Wu & Bo Wang & Dongdong Zhang & Ziwei Zhao & Hongyu Zhu, 2023. "Benchmarking Evaluation of Building Energy Consumption Based on Data Mining," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
  21. Papadopoulos, Sokratis & Bonczak, Bartosz & Kontokosta, Constantine E., 2018. "Pattern recognition in building energy performance over time using energy benchmarking data," Applied Energy, Elsevier, vol. 221(C), pages 576-586.
  22. Tran, Duc-Hoc & Luong, Duc-Long & Chou, Jui-Sheng, 2020. "Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings," Energy, Elsevier, vol. 191(C).
  23. Ahlrichs, Jakob & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2022. "Impact of socio-economic factors on local energetic retrofitting needs - A data analytics approach," Energy Policy, Elsevier, vol. 160(C).
  24. Ye, Zhongnan & Cheng, Kuangly & Hsu, Shu-Chien & Wei, Hsi-Hsien & Cheung, Clara Man, 2021. "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach," Applied Energy, Elsevier, vol. 301(C).
  25. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  26. Serrano, Susana & Ürge-Vorsatz, Diana & Barreneche, Camila & Palacios, Anabel & Cabeza, Luisa F., 2017. "Heating and cooling energy trends and drivers in Europe," Energy, Elsevier, vol. 119(C), pages 425-434.
  27. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
  28. Jiang, Feifeng & Ma, Jun & Li, Zheng & Ding, Yuexiong, 2022. "Prediction of energy use intensity of urban buildings using the semi-supervised deep learning model," Energy, Elsevier, vol. 249(C).
  29. Wang, Chendong & Yuan, Jianjuan & Huang, Ke & Zhang, Ji & Zheng, Lihong & Zhou, Zhihua & Zhang, Yufeng, 2022. "Research on thermal load prediction of district heating station based on transfer learning," Energy, Elsevier, vol. 239(PE).
  30. Díaz, Santiago & Carta, José A. & Matías, José M., 2018. "Performance assessment of five MCP models proposed for the estimation of long-term wind turbine power outputs at a target site using three machine learning techniques," Applied Energy, Elsevier, vol. 209(C), pages 455-477.
  31. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
  32. Talita Mariane Cristino & Antonio Faria Neto & Antonio Fernando Branco Costa, 2018. "Energy efficiency in buildings: analysis of scientific literature and identification of data analysis techniques from a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1275-1326, March.
  33. Ahmed Gassar, Abdo Abdullah & Yun, Geun Young & Kim, Sumin, 2019. "Data-driven approach to prediction of residential energy consumption at urban scales in London," Energy, Elsevier, vol. 187(C).
  34. Salimian Rizi, Behzad & Pavlak, Gregory & Cushing, Vincent & Heidarinejad, Mohammad, 2023. "Predicting uncertainty of a chiller plant power consumption using quantile random forest: A commercial building case study," Energy, Elsevier, vol. 283(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.