IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v139y2020ics0301421520300847.html
   My bibliography  Save this article

Examining the feasibility of using open data to benchmark building energy usage in cities: A data science and policy perspective

Author

Listed:
  • Roth, Jonathan
  • Lim, Benjamin
  • Jain, Rishee K.
  • Grueneich, Dian

Abstract

Buildings are by far the largest source of urban energy consumption. In an effort to reduce energy use, cities are mandating that buildings undergo energy benchmarking—the process of measuring building energy performance in order to identify buildings that are inefficient. In this paper, we examine the feasibility of using city-specific, public open data sources in two benchmarking models and compare the results to the same models when using the Commercial Building Energy Consumption Survey (CBECS) dataset, the basis for Energy Star. The two benchmarking models use datasets containing building characteristics and annual energy use from ten major cities. To examine the difference in performance between linear and non-linear models, we use random forest and lasso regression. Results demonstrate that benchmarking models using open data outperform models based solely on the CBECS dataset. Additionally, our results indicate that building area, property type, conditioned area, and water usage are the most important variables for cities to collect. Having demonstrated the benefits of using open data, we recommend two changes to current benchmarking practices: (1) new guidelines that support a data-driven benchmarking framework relying on open data and a transparent modeling process and (2) supporting policies that publicize benchmarking results and incentivize energy savings.

Suggested Citation

  • Roth, Jonathan & Lim, Benjamin & Jain, Rishee K. & Grueneich, Dian, 2020. "Examining the feasibility of using open data to benchmark building energy usage in cities: A data science and policy perspective," Energy Policy, Elsevier, vol. 139(C).
  • Handle: RePEc:eee:enepol:v:139:y:2020:i:c:s0301421520300847
    DOI: 10.1016/j.enpol.2020.111327
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520300847
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111327?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth Gillingham & Karen Palmer, 2014. "Bridging the Energy Efficiency Gap: Policy Insights from Economic Theory and Empirical Evidence," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 8(1), pages 18-38, January.
    2. Hsu, David, 2014. "How much information disclosure of building energy performance is necessary?," Energy Policy, Elsevier, vol. 64(C), pages 263-272.
    3. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    4. Doove, L.L. & Van Buuren, S. & Dusseldorp, E., 2014. "Recursive partitioning for missing data imputation in the presence of interaction effects," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 92-104.
    5. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    6. Hsu, David, 2015. "Identifying key variables and interactions in statistical models of building energy consumption using regularization," Energy, Elsevier, vol. 83(C), pages 144-155.
    7. Pettifor, H. & Wilson, C. & Chryssochoidis, G., 2015. "The appeal of the green deal: Empirical evidence for the influence of energy efficiency policy on renovating homeowners," Energy Policy, Elsevier, vol. 79(C), pages 161-176.
    8. Papadopoulos, Sokratis & Kontokosta, Constantine E., 2019. "Grading buildings on energy performance using city benchmarking data," Applied Energy, Elsevier, vol. 233, pages 244-253.
    9. Ginger Zhe Jin & Phillip Leslie, 2003. "The Effect of Information on Product Quality: Evidence from Restaurant Hygiene Grade Cards," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(2), pages 409-451.
    10. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    11. Kerr, Niall & Gouldson, Andy & Barrett, John, 2017. "The rationale for energy efficiency policy: Assessing the recognition of the multiple benefits of energy efficiency retrofit policy," Energy Policy, Elsevier, vol. 106(C), pages 212-221.
    12. Menezes, Anna Carolina & Cripps, Andrew & Bouchlaghem, Dino & Buswell, Richard, 2012. "Predicted vs. actual energy performance of non-domestic buildings: Using post-occupancy evaluation data to reduce the performance gap," Applied Energy, Elsevier, vol. 97(C), pages 355-364.
    13. Papadopoulos, Sokratis & Bonczak, Bartosz & Kontokosta, Constantine E., 2018. "Pattern recognition in building energy performance over time using energy benchmarking data," Applied Energy, Elsevier, vol. 221(C), pages 576-586.
    14. Meng, Ting & Hsu, David & Han, Albert, 2017. "Estimating energy savings from benchmarking policies in New York City," Energy, Elsevier, vol. 133(C), pages 415-423.
    15. Wong, M.R. & McKelvey, W. & Ito, K. & Schiff, C. & Jacobson, J.B. & Kass, D., 2015. "Impact of a letter-grade program on restaurant sanitary conditions and diner behavior in New York City," American Journal of Public Health, American Public Health Association, vol. 105(3), pages 81-87.
    16. Buck, J. & Young, D., 2007. "The potential for energy efficiency gains in the Canadian commercial building sector: A stochastic frontier study," Energy, Elsevier, vol. 32(9), pages 1769-1780.
    17. Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
    18. Roth, Jonathan & Rajagopal, Ram, 2018. "Benchmarking building energy efficiency using quantile regression," Energy, Elsevier, vol. 152(C), pages 866-876.
    19. Kontokosta, Constantine E. & Tull, Christopher, 2017. "A data-driven predictive model of city-scale energy use in buildings," Applied Energy, Elsevier, vol. 197(C), pages 303-317.
    20. Pfenninger, Stefan & DeCarolis, Joseph & Hirth, Lion & Quoilin, Sylvain & Staffell, Iain, 2017. "The importance of open data and software: Is energy research lagging behind?," Energy Policy, Elsevier, vol. 101(C), pages 211-215.
    21. Chen, Yixing & Hong, Tianzhen & Piette, Mary Ann, 2017. "Automatic generation and simulation of urban building energy models based on city datasets for city-scale building retrofit analysis," Applied Energy, Elsevier, vol. 205(C), pages 323-335.
    22. Kok, Nils & Jennen, Maarten, 2012. "The impact of energy labels and accessibility on office rents," Energy Policy, Elsevier, vol. 46(C), pages 489-497.
    23. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eunji Kim & Yoonhee Ha, 2021. "Vitalization Strategies for the Building Energy Management System (BEMS) Industry Ecosystem Based on AHP Analysis," Energies, MDPI, vol. 14(9), pages 1-16, April.
    2. Andrews, Abigail & Jain, Rishee K., 2022. "Beyond Energy Efficiency: A clustering approach to embed demand flexibility into building energy benchmarking," Applied Energy, Elsevier, vol. 327(C).
    3. Nils Artiges & Simon Rouchier & Benoit Delinchant & Frédéric Wurtz, 2021. "Bayesian Inference of Dwellings Energy Signature at National Scale: Case of the French Residential Stock," Energies, MDPI, vol. 14(18), pages 1-26, September.
    4. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    5. Wadim Strielkowski & Irina Firsova & Inna Lukashenko & Jurgita Raudeliūnienė & Manuela Tvaronavičienė, 2021. "Effective Management of Energy Consumption during the COVID-19 Pandemic: The Role of ICT Solutions," Energies, MDPI, vol. 14(4), pages 1-17, February.
    6. Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Data-driven framework towards realistic bottom-up energy benchmarking using an Artificial Neural Network," Applied Energy, Elsevier, vol. 306(PA).
    7. Haoqiang Yuan, 2024. "Investigating the Nexus Between Environmental Information Disclosure and Green Development Efficiency: The Intermediary Role of Green Technology Innovation—a PSM-DID Analysis," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 15(3), pages 11653-11683, September.
    8. Piscitelli, Marco Savino & Giudice, Rocco & Capozzoli, Alfonso, 2024. "A holistic time series-based energy benchmarking framework for applications in large stocks of buildings," Applied Energy, Elsevier, vol. 357(C).
    9. Li, Tian & Bie, Haipei & Lu, Yi & Sawyer, Azadeh Omidfar & Loftness, Vivian, 2024. "MEBA: AI-powered precise building monthly energy benchmarking approach," Applied Energy, Elsevier, vol. 359(C).
    10. Ahlrichs, Jakob & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2022. "Impact of socio-economic factors on local energetic retrofitting needs - A data analytics approach," Energy Policy, Elsevier, vol. 160(C).
    11. Arjunan, Pandarasamy & Poolla, Kameshwar & Miller, Clayton, 2020. "EnergyStar++: Towards more accurate and explanatory building energy benchmarking," Applied Energy, Elsevier, vol. 276(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    2. Andrews, Abigail & Jain, Rishee K., 2022. "Beyond Energy Efficiency: A clustering approach to embed demand flexibility into building energy benchmarking," Applied Energy, Elsevier, vol. 327(C).
    3. Roth, Jonathan & Rajagopal, Ram, 2018. "Benchmarking building energy efficiency using quantile regression," Energy, Elsevier, vol. 152(C), pages 866-876.
    4. Liu, Xue & Ding, Yong & Tang, Hao & Fan, Lingxiao & Lv, Jie, 2022. "Investigating the effects of key drivers on energy consumption of nonresidential buildings: A data-driven approach integrating regularization and quantile regression," Energy, Elsevier, vol. 244(PA).
    5. Papadopoulos, Sokratis & Kontokosta, Constantine E., 2019. "Grading buildings on energy performance using city benchmarking data," Applied Energy, Elsevier, vol. 233, pages 244-253.
    6. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Data-driven framework towards realistic bottom-up energy benchmarking using an Artificial Neural Network," Applied Energy, Elsevier, vol. 306(PA).
    8. Mohammed Hammam Mohammed Al-Madani & Yudi Fernando & Ming-Lang Tseng, 2022. "Assuring Energy Reporting Integrity: Government Policy’s Past, Present, and Future Roles," Sustainability, MDPI, vol. 14(22), pages 1-24, November.
    9. Geraldi, Matheus Soares & Ghisi, Enedir, 2022. "Integrating evidence-based thermal satisfaction in energy benchmarking: A data-driven approach for a whole-building evaluation," Energy, Elsevier, vol. 244(PB).
    10. Arjunan, Pandarasamy & Poolla, Kameshwar & Miller, Clayton, 2020. "EnergyStar++: Towards more accurate and explanatory building energy benchmarking," Applied Energy, Elsevier, vol. 276(C).
    11. Papadopoulos, Sokratis & Bonczak, Bartosz & Kontokosta, Constantine E., 2018. "Pattern recognition in building energy performance over time using energy benchmarking data," Applied Energy, Elsevier, vol. 221(C), pages 576-586.
    12. Salah Vaisi & Saleh Mohammadi & Benedetto Nastasi & Kavan Javanroodi, 2020. "A New Generation of Thermal Energy Benchmarks for University Buildings," Energies, MDPI, vol. 13(24), pages 1-18, December.
    13. Filippini, Massimo & Hunt, Lester C., 2012. "US residential energy demand and energy efficiency: A stochastic demand frontier approach," Energy Economics, Elsevier, vol. 34(5), pages 1484-1491.
    14. Giraudet, Louis-Gaëtan, 2020. "Energy efficiency as a credence good: A review of informational barriers to energy savings in the building sector," Energy Economics, Elsevier, vol. 87(C).
    15. Giovanni Marin & Alessandro Palma, 2015. "Technology invention and diffusion in residential energy consumption. A stochastic frontier approach," SEEDS Working Papers 1415, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Sep 2015.
    16. Lai, Yuan & Papadopoulos, Sokratis & Fuerst, Franz & Pivo, Gary & Sagi, Jacob & Kontokosta, Constantine E., 2022. "Building retrofit hurdle rates and risk aversion in energy efficiency investments," Applied Energy, Elsevier, vol. 306(PB).
    17. Abbasabadi, Narjes & Ashayeri, Mehdi & Azari, Rahman & Stephens, Brent & Heidarinejad, Mohammad, 2019. "An integrated data-driven framework for urban energy use modeling (UEUM)," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Bianchi, Carlo & Zhang, Liang & Goldwasser, David & Parker, Andrew & Horsey, Henry, 2020. "Modeling occupancy-driven building loads for large and diversified building stocks through the use of parametric schedules," Applied Energy, Elsevier, vol. 276(C).
    19. Fathi, Soheil & Srinivasan, Ravi & Fenner, Andriel & Fathi, Sahand, 2020. "Machine learning applications in urban building energy performance forecasting: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    20. Yu, Xinran & Zou, Zhengbo & Ergan, Semiha, 2023. "Extracting principal building variables from automatically collected urban scale façade images for energy conservation through deep transfer learning," Applied Energy, Elsevier, vol. 344(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:139:y:2020:i:c:s0301421520300847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.