IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v173y2016icp134-140.html
   My bibliography  Save this item

An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
  2. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
  3. Lin, Chun-Pang & Cabrera, Javier & Yang, Fangfang & Ling, Man-Ho & Tsui, Kwok-Leung & Bae, Suk-Joo, 2020. "Battery state of health modeling and remaining useful life prediction through time series model," Applied Energy, Elsevier, vol. 275(C).
  4. Yang, Bo & Qian, Yucun & Li, Qiang & Chen, Qian & Wu, Jiyang & Luo, Enbo & Xie, Rui & Zheng, Ruyi & Yan, Yunfeng & Su, Shi & Wang, Jingbo, 2024. "Critical summary and perspectives on state-of-health of lithium-ion battery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
  5. Xiaoyu Li & Xing Shu & Jiangwei Shen & Renxin Xiao & Wensheng Yan & Zheng Chen, 2017. "An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-15, May.
  6. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
  7. Jinhyeong Park & Munsu Lee & Gunwoo Kim & Seongyun Park & Jonghoon Kim, 2020. "Integrated Approach Based on Dual Extended Kalman Filter and Multivariate Autoregressive Model for Predicting Battery Capacity Using Health Indicator and SOC/SOH," Energies, MDPI, vol. 13(9), pages 1-20, April.
  8. Chen, Dinghong & Zhang, Weige & Zhang, Caiping & Sun, Bingxiang & Cong, XinWei & Wei, Shaoyuan & Jiang, Jiuchun, 2022. "A novel deep learning-based life prediction method for lithium-ion batteries with strong generalization capability under multiple cycle profiles," Applied Energy, Elsevier, vol. 327(C).
  9. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).
  10. Liu, Chang & Wang, Yujie & Chen, Zonghai, 2019. "Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system," Energy, Elsevier, vol. 166(C), pages 796-806.
  11. Chang, Yang & Fang, Huajing & Zhang, Yong, 2017. "A new hybrid method for the prediction of the remaining useful life of a lithium-ion battery," Applied Energy, Elsevier, vol. 206(C), pages 1564-1578.
  12. Yanming Li & Xiaojuan Qin & Furong Ma & Haoran Wu & Min Chai & Fujing Zhang & Fenghe Jiang & Xu Lei, 2024. "Fusion Technology-Based CNN-LSTM-ASAN for RUL Estimation of Lithium-Ion Batteries," Sustainability, MDPI, vol. 16(21), pages 1-22, October.
  13. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
  14. Lyu, Zhiqiang & Wang, Geng & Gao, Renjing, 2022. "Synchronous state of health estimation and remaining useful lifetime prediction of Li-Ion battery through optimized relevance vector machine framework," Energy, Elsevier, vol. 251(C).
  15. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
  16. Sibo Zeng & Sheng Chen & Babakalli Alkali, 2024. "Lithium-Ion Battery Capacity Estimation Based on Incremental Capacity Analysis and Deep Convolutional Neural Network," Energies, MDPI, vol. 17(6), pages 1-14, March.
  17. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
  18. Chen, Dan & Meng, Jinhao & Huang, Huanyang & Wu, Ji & Liu, Ping & Lu, Jiwu & Liu, Tianqi, 2022. "An Empirical-Data Hybrid Driven Approach for Remaining Useful Life prediction of lithium-ion batteries considering capacity diving," Energy, Elsevier, vol. 245(C).
  19. Fei, Zicheng & Yang, Fangfang & Tsui, Kwok-Leung & Li, Lishuai & Zhang, Zijun, 2021. "Early prediction of battery lifetime via a machine learning based framework," Energy, Elsevier, vol. 225(C).
  20. Zhao, Xiancong & Bai, Hao & Shi, Qi & Lu, Xin & Zhang, Zhihui, 2017. "Optimal scheduling of a byproduct gas system in a steel plant considering time-of-use electricity pricing," Applied Energy, Elsevier, vol. 195(C), pages 100-113.
  21. Han, Xiaojuan & Wang, Zuran & Wei, Zixuan, 2021. "A novel approach for health management online-monitoring of lithium-ion batteries based on model-data fusion," Applied Energy, Elsevier, vol. 302(C).
  22. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
  23. Kurucan, Mehmet & Özbaltan, Mete & Yetgin, Zeki & Alkaya, Alkan, 2024. "Applications of artificial neural network based battery management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
  24. Zhang, Mengfan & Gómez, Pere Izquierdo & Xu, Qianwen & Dragicevic, Tomislav, 2023. "Review of online learning for control and diagnostics of power converters and drives: Algorithms, implementations and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  25. Zhengyu Liu & Jingjie Zhao & Hao Wang & Chao Yang, 2020. "A New Lithium-Ion Battery SOH Estimation Method Based on an Indirect Enhanced Health Indicator and Support Vector Regression in PHMs," Energies, MDPI, vol. 13(4), pages 1-17, February.
  26. Xiaojie Ke & Zhengguo Xu & Wenhai Wang & Youxian Sun, 2017. "Remaining useful life prediction for non-stationary degradation processes with shocks," Journal of Risk and Reliability, , vol. 231(5), pages 469-480, October.
  27. Wu, Ji & Fang, Leichao & Dong, Guangzhong & Lin, Mingqiang, 2023. "State of health estimation of lithium-ion battery with improved radial basis function neural network," Energy, Elsevier, vol. 262(PB).
  28. Ma, Yan & Shan, Ce & Gao, Jinwu & Chen, Hong, 2022. "A novel method for state of health estimation of lithium-ion batteries based on improved LSTM and health indicators extraction," Energy, Elsevier, vol. 251(C).
  29. Jun Peng & Zhiyong Zheng & Xiaoyong Zhang & Kunyuan Deng & Kai Gao & Heng Li & Bin Chen & Yingze Yang & Zhiwu Huang, 2020. "A Data-Driven Method with Feature Enhancement and Adaptive Optimization for Lithium-Ion Battery Remaining Useful Life Prediction," Energies, MDPI, vol. 13(3), pages 1-20, February.
  30. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
  31. Liu, Kailong & Ashwin, T.R. & Hu, Xiaosong & Lucu, Mattin & Widanage, W. Dhammika, 2020. "An evaluation study of different modelling techniques for calendar ageing prediction of lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  32. Zhang, Yu & Peng, Zhen & Guan, Yong & Wu, Lifeng, 2021. "Prognostics of battery cycle life in the early-cycle stage based on hybrid model," Energy, Elsevier, vol. 221(C).
  33. Sohn, Suyeon & Byun, Ha-Eun & Lee, Jay H., 2022. "Two-stage deep learning for online prediction of knee-point in Li-ion battery capacity degradation," Applied Energy, Elsevier, vol. 328(C).
  34. Tianfei Sun & Bizhong Xia & Yifan Liu & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2019. "A Novel Hybrid Prognostic Approach for Remaining Useful Life Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 12(19), pages 1-22, September.
  35. Luping Chen & Liangjun Xu & Yilin Zhou, 2018. "Novel Approach for Lithium-Ion Battery On-Line Remaining Useful Life Prediction Based on Permutation Entropy," Energies, MDPI, vol. 11(4), pages 1-15, April.
  36. Hajra Khan & Imran Fareed Nizami & Saeed Mian Qaisar & Asad Waqar & Moez Krichen & Abdulaziz Turki Almaktoom, 2022. "Analyzing Optimal Battery Sizing in Microgrids Based on the Feature Selection and Machine Learning Approaches," Energies, MDPI, vol. 15(21), pages 1-22, October.
  37. Wei Li & Hang Li & Zheng He & Weijie Ji & Jing Zeng & Xue Li & Yiyong Zhang & Peng Zhang & Jinbao Zhao, 2022. "Electrochemical Failure Results Inevitable Capacity Degradation in Li-Ion Batteries—A Review," Energies, MDPI, vol. 15(23), pages 1-28, December.
  38. J. N. Chandra Sekhar & Bullarao Domathoti & Ernesto D. R. Santibanez Gonzalez, 2023. "Prediction of Battery Remaining Useful Life Using Machine Learning Algorithms," Sustainability, MDPI, vol. 15(21), pages 1-28, October.
  39. Zhang, Jianyu & Lu, Wei, 2022. "Sparse data machine learning for battery health estimation and optimal design incorporating material characteristics," Applied Energy, Elsevier, vol. 307(C).
  40. Cadini, F. & Sbarufatti, C. & Cancelliere, F. & Giglio, M., 2019. "State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters," Applied Energy, Elsevier, vol. 235(C), pages 661-672.
  41. Ye, Jinhua & Xie, Quan & Lin, Mingqiang & Wu, Ji, 2024. "A method for estimating the state of health of lithium-ion batteries based on physics-informed neural network," Energy, Elsevier, vol. 294(C).
  42. Zhang, Chen & Wang, Hongmin & Wu, Lifeng, 2023. "Life prediction model for lithium-ion battery considering fast-charging protocol," Energy, Elsevier, vol. 263(PE).
  43. Bowen Jia & Yong Guan & Lifeng Wu, 2019. "A State of Health Estimation Framework for Lithium-Ion Batteries Using Transfer Components Analysis," Energies, MDPI, vol. 12(13), pages 1-14, June.
  44. Lai, Xin & Yi, Wei & Cui, Yifan & Qin, Chao & Han, Xuebing & Sun, Tao & Zhou, Long & Zheng, Yuejiu, 2021. "Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter," Energy, Elsevier, vol. 216(C).
  45. Sadiqa Jafari & Zeinab Shahbazi & Yung-Cheol Byun & Sang-Joon Lee, 2022. "Lithium-Ion Battery Estimation in Online Framework Using Extreme Gradient Boosting Machine Learning Approach," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
  46. Wang, Chenxu & Xiong, Rui & Tian, Jinpeng & Lu, Jiahuan & Zhang, Chengming, 2022. "Rapid ultracapacitor life prediction with a convolutional neural network," Applied Energy, Elsevier, vol. 305(C).
  47. Wang, Yujie & Chen, Zonghai & Zhang, Chenbin, 2017. "On-line remaining energy prediction: A case study in embedded battery management system," Applied Energy, Elsevier, vol. 194(C), pages 688-695.
  48. Lv, Haichao & Kang, Lixia & Liu, Yongzhong, 2023. "Analysis of strategies to maximize the cycle life of lithium-ion batteries based on aging trajectory prediction," Energy, Elsevier, vol. 275(C).
  49. Jong-Hyun Lee & In-Soo Lee, 2021. "Lithium Battery SOH Monitoring and an SOC Estimation Algorithm Based on the SOH Result," Energies, MDPI, vol. 14(15), pages 1-16, July.
  50. Tang, Xiaopeng & Zou, Changfu & Yao, Ke & Lu, Jingyi & Xia, Yongxiao & Gao, Furong, 2019. "Aging trajectory prediction for lithium-ion batteries via model migration and Bayesian Monte Carlo method," Applied Energy, Elsevier, vol. 254(C).
  51. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
  52. Wang, Cong & Chen, Yunxia & Zhang, Qingyuan & Zhu, Jiaxiao, 2023. "Dynamic early recognition of abnormal lithium-ion batteries before capacity drops using self-adaptive quantum clustering," Applied Energy, Elsevier, vol. 336(C).
  53. Ding, Pan & Liu, Xiaojuan & Li, Huiqin & Huang, Zequan & Zhang, Ke & Shao, Long & Abedinia, Oveis, 2021. "Useful life prediction based on wavelet packet decomposition and two-dimensional convolutional neural network for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  54. Molla Shahadat Hossain Lipu & Tahia F. Karim & Shaheer Ansari & Md. Sazal Miah & Md. Siddikur Rahman & Sheikh T. Meraj & Rajvikram Madurai Elavarasan & Raghavendra Rajan Vijayaraghavan, 2022. "Intelligent SOX Estimation for Automotive Battery Management Systems: State-of-the-Art Deep Learning Approaches, Open Issues, and Future Research Opportunities," Energies, MDPI, vol. 16(1), pages 1-31, December.
  55. Ly, Sel & Xie, Jiahang & Wolter, Franz-Erich & Nguyen, Hung D. & Weng, Yu, 2023. "T-shape data and probabilistic remaining useful life prediction for Li-ion batteries using multiple non-crossing quantile long short-term memory," Applied Energy, Elsevier, vol. 349(C).
  56. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Multi-Channel Profile Based Artificial Neural Network Approach for Remaining Useful Life Prediction of Electric Vehicle Lithium-Ion Batteries," Energies, MDPI, vol. 14(22), pages 1-22, November.
  57. Shaheer Ansari & Afida Ayob & Molla Shahadat Hossain Lipu & Aini Hussain & Mohamad Hanif Md Saad, 2021. "Data-Driven Remaining Useful Life Prediction for Lithium-Ion Batteries Using Multi-Charging Profile Framework: A Recurrent Neural Network Approach," Sustainability, MDPI, vol. 13(23), pages 1-25, December.
  58. Xiaoqiong Pang & Rui Huang & Jie Wen & Yuanhao Shi & Jianfang Jia & Jianchao Zeng, 2019. "A Lithium-ion Battery RUL Prediction Method Considering the Capacity Regeneration Phenomenon," Energies, MDPI, vol. 12(12), pages 1-14, June.
  59. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
  60. Zheng, Yuejiu & Qin, Chao & Lai, Xin & Han, Xuebing & Xie, Yi, 2019. "A novel capacity estimation method for lithium-ion batteries using fusion estimation of charging curve sections and discrete Arrhenius aging model," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  61. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
  62. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
  63. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Ma, Junpeng & Luo, Guangzhao & Teodorescu, Remus, 2020. "An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system," Energy, Elsevier, vol. 206(C).
  64. You, Gae-won & Park, Sangdo & Oh, Dukjin, 2016. "Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach," Applied Energy, Elsevier, vol. 176(C), pages 92-103.
  65. Liu, Hao & Chen, Jian & Hissel, Daniel & Su, Hongye, 2019. "Remaining useful life estimation for proton exchange membrane fuel cells using a hybrid method," Applied Energy, Elsevier, vol. 237(C), pages 910-919.
  66. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
  67. Li, Xue & Jiang, Jiuchun & Wang, Le Yi & Chen, Dafen & Zhang, Yanru & Zhang, Caiping, 2016. "A capacity model based on charging process for state of health estimation of lithium ion batteries," Applied Energy, Elsevier, vol. 177(C), pages 537-543.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.