IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919312656.html
   My bibliography  Save this article

Aging trajectory prediction for lithium-ion batteries via model migration and Bayesian Monte Carlo method

Author

Listed:
  • Tang, Xiaopeng
  • Zou, Changfu
  • Yao, Ke
  • Lu, Jingyi
  • Xia, Yongxiao
  • Gao, Furong

Abstract

This paper develops a new prediction method for the aging trajectory of lithium-ion batteries with significantly reduced experimental tests. This method is driven by data collected from two types of battery operation modes. The first type is accelerated aging tests that are performed under stress factors, such as overcharging, over-discharging and large current rates, and cover most of the battery lifespan. In the second operation mode, the same kinds of cells are aged at normal speeds to generate a partial aging profile. An accelerated aging model is developed based on the first type of data and is then migrated as a new model to describe the normal-speed aging behavior. Under the framework of Bayesian Monte Carlo algorithms, the new model is parameterized based on the second type of data and is used for prediction of the remaining battery aging trajectory. The proposed prediction method is validated on three types of commercial batteries and also compared with two benchmark algorithms. The sensitivity of results to the number of cycles is investigated for both modes. Illustrative results demonstrate that based on the normal-speed aging data collected in the first 30 cycles, the proposed method can predict the entire aging trajectories (up to 500 cycles) at a root-mean-square error of less than 2.5% for all considered scenarios. When only using the first five-cycle data for model training, such a prediction error is bounded by 5% for aging trajectories of all the tested batteries.

Suggested Citation

  • Tang, Xiaopeng & Zou, Changfu & Yao, Ke & Lu, Jingyi & Xia, Yongxiao & Gao, Furong, 2019. "Aging trajectory prediction for lithium-ion batteries via model migration and Bayesian Monte Carlo method," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919312656
    DOI: 10.1016/j.apenergy.2019.113591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919312656
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113591?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kouritzin, Michael A., 2017. "Residual and stratified branching particle filters," Computational Statistics & Data Analysis, Elsevier, vol. 111(C), pages 145-165.
    2. Hu, Chao & Jain, Gaurav & Tamirisa, Prabhakar & Gorka, Tom, 2014. "Method for estimating capacity and predicting remaining useful life of lithium-ion battery," Applied Energy, Elsevier, vol. 126(C), pages 182-189.
    3. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    4. Wu, Ji & Zhang, Chenbin & Chen, Zonghai, 2016. "An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks," Applied Energy, Elsevier, vol. 173(C), pages 134-140.
    5. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    6. Li, Yi & Zou, Changfu & Berecibar, Maitane & Nanini-Maury, Elise & Chan, Jonathan C.-W. & van den Bossche, Peter & Van Mierlo, Joeri & Omar, Noshin, 2018. "Random forest regression for online capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 232(C), pages 197-210.
    7. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Dao & Zhou, Zhijie & Tang, Shuaiwen & Cao, You & Wang, Jie & Zhang, Peng & Zhang, Yijun, 2022. "Online estimation of satellite lithium-ion battery capacity based on approximate belief rule base and hidden Markov model," Energy, Elsevier, vol. 256(C).
    2. Tu, Hao & Moura, Scott & Wang, Yebin & Fang, Huazhen, 2023. "Integrating physics-based modeling with machine learning for lithium-ion batteries," Applied Energy, Elsevier, vol. 329(C).
    3. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    4. Gong, Dongliang & Gao, Ying & Kou, Yalin & Wang, Yurang, 2022. "State of health estimation for lithium-ion battery based on energy features," Energy, Elsevier, vol. 257(C).
    5. Shaojie Ai & Jia Song & Guobiao Cai, 2022. "Sequence-to-Sequence Remaining Useful Life Prediction of the Highly Maneuverable Unmanned Aerial Vehicle: A Multilevel Fusion Transformer Network Solution," Mathematics, MDPI, vol. 10(10), pages 1-23, May.
    6. Kurucan, Mehmet & Özbaltan, Mete & Yetgin, Zeki & Alkaya, Alkan, 2024. "Applications of artificial neural network based battery management systems: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Kim, Sung Wook & Oh, Ki-Yong & Lee, Seungchul, 2022. "Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries," Applied Energy, Elsevier, vol. 315(C).
    8. Tian, Jiaqiang & Xu, Ruilong & Wang, Yujie & Chen, Zonghai, 2021. "Capacity attenuation mechanism modeling and health assessment of lithium-ion batteries," Energy, Elsevier, vol. 221(C).
    9. Li, Xiaoyu & Zhang, Zuguang & Wang, Wenhui & Tian, Yong & Li, Dong & Tian, Jindong, 2020. "Multiphysical field measurement and fusion for battery electric-thermal-contour performance analysis," Applied Energy, Elsevier, vol. 262(C).
    10. Fabian Rücker & Ilka Schoeneberger & Till Wilmschen & Ahmed Chahbaz & Philipp Dechent & Felix Hildenbrand & Elias Barbers & Matthias Kuipers & Jan Figgener & Dirk Uwe Sauer, 2022. "A Comprehensive Electric Vehicle Model for Vehicle-to-Grid Strategy Development," Energies, MDPI, vol. 15(12), pages 1-31, June.
    11. Benalcazar, Pablo & Kalka, Maciej & Kamiński, Jacek, 2024. "From consumer to prosumer: A model-based analysis of costs and benefits of grid-connected residential PV-battery systems," Energy Policy, Elsevier, vol. 191(C).
    12. Hsu, Chia-Wei & Xiong, Rui & Chen, Nan-Yow & Li, Ju & Tsou, Nien-Ti, 2022. "Deep neural network battery life and voltage prediction by using data of one cycle only," Applied Energy, Elsevier, vol. 306(PB).
    13. Li, Xiaoyu & Huang, Zhijia & Tian, Jindong & Tian, Yong, 2021. "State-of-charge estimation tolerant of battery aging based on a physics-based model and an adaptive cubature Kalman filter," Energy, Elsevier, vol. 220(C).
    14. Li, Shuangqi & He, Hongwen & Su, Chang & Zhao, Pengfei, 2020. "Data driven battery modeling and management method with aging phenomenon considered," Applied Energy, Elsevier, vol. 275(C).
    15. Zhou, Danhua & Wang, Bin & Zhu, Chao & Zhou, Fang & Wu, Hong, 2023. "A light-weight feature extractor for lithium-ion battery health prognosis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. Dixon, James & Andersen, Peter Bach & Bell, Keith & Træholt, Chresten, 2020. "On the ease of being green: An investigation of the inconvenience of electric vehicle charging," Applied Energy, Elsevier, vol. 258(C).
    17. Maheshwari, Arpit & Paterakis, Nikolaos G. & Santarelli, Massimo & Gibescu, Madeleine, 2020. "Optimizing the operation of energy storage using a non-linear lithium-ion battery degradation model," Applied Energy, Elsevier, vol. 261(C).
    18. Chen, Zewang & Shi, Na & Ji, Yufan & Niu, Mu & Wang, Youren, 2021. "Lithium-ion batteries remaining useful life prediction based on BLS-RVM," Energy, Elsevier, vol. 234(C).
    19. Che, Yunhong & Zheng, Yusheng & Wu, Yue & Sui, Xin & Bharadwaj, Pallavi & Stroe, Daniel-Ioan & Yang, Yalian & Hu, Xiaosong & Teodorescu, Remus, 2022. "Data efficient health prognostic for batteries based on sequential information-driven probabilistic neural network," Applied Energy, Elsevier, vol. 323(C).
    20. Hong, Jichao & Wang, Zhenpo & Qu, Changhui & Zhou, Yangjie & Shan, Tongxin & Zhang, Jinghan & Hou, Yankai, 2022. "Investigation on overcharge-caused thermal runaway of lithium-ion batteries in real-world electric vehicles," Applied Energy, Elsevier, vol. 321(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    2. Wang, Yixiu & Zhu, Jiangong & Cao, Liang & Gopaluni, Bhushan & Cao, Yankai, 2023. "Long Short-Term Memory Network with Transfer Learning for Lithium-ion Battery Capacity Fade and Cycle Life Prediction," Applied Energy, Elsevier, vol. 350(C).
    3. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    4. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    5. Xiaoyu Li & Xing Shu & Jiangwei Shen & Renxin Xiao & Wensheng Yan & Zheng Chen, 2017. "An On-Board Remaining Useful Life Estimation Algorithm for Lithium-Ion Batteries of Electric Vehicles," Energies, MDPI, vol. 10(5), pages 1-15, May.
    6. Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.
    7. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Sadiqa Jafari & Zeinab Shahbazi & Yung-Cheol Byun & Sang-Joon Lee, 2022. "Lithium-Ion Battery Estimation in Online Framework Using Extreme Gradient Boosting Machine Learning Approach," Mathematics, MDPI, vol. 10(6), pages 1-17, March.
    9. Fei, Zicheng & Yang, Fangfang & Tsui, Kwok-Leung & Li, Lishuai & Zhang, Zijun, 2021. "Early prediction of battery lifetime via a machine learning based framework," Energy, Elsevier, vol. 225(C).
    10. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    11. Zhengyu Liu & Jingjie Zhao & Hao Wang & Chao Yang, 2020. "A New Lithium-Ion Battery SOH Estimation Method Based on an Indirect Enhanced Health Indicator and Support Vector Regression in PHMs," Energies, MDPI, vol. 13(4), pages 1-17, February.
    12. Zhang, Yu & Peng, Zhen & Guan, Yong & Wu, Lifeng, 2021. "Prognostics of battery cycle life in the early-cycle stage based on hybrid model," Energy, Elsevier, vol. 221(C).
    13. Cadini, F. & Sbarufatti, C. & Cancelliere, F. & Giglio, M., 2019. "State-of-life prognosis and diagnosis of lithium-ion batteries by data-driven particle filters," Applied Energy, Elsevier, vol. 235(C), pages 661-672.
    14. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    15. Wang, Fu-Kwun & Amogne, Zemenu Endalamaw & Chou, Jia-Hong & Tseng, Cheng, 2022. "Online remaining useful life prediction of lithium-ion batteries using bidirectional long short-term memory with attention mechanism," Energy, Elsevier, vol. 254(PB).
    16. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    17. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    18. Doumen, Sjoerd C. & Nguyen, Phuong & Kok, Koen, 2022. "Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Mitra Pooyandeh & Insoo Sohn, 2023. "Smart Lithium-Ion Battery Monitoring in Electric Vehicles: An AI-Empowered Digital Twin Approach," Mathematics, MDPI, vol. 11(23), pages 1-37, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919312656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.