IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v171y2016icp581-591.html
   My bibliography  Save this item

A dynamic organic Rankine cycle using a zeotropic mixture as the working fluid with composition tuning to match changing ambient conditions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
  2. Wang, Enhua & Yu, Zhibin & Collings, Peter, 2017. "Dynamic control strategy of a distillation system for a composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 141(C), pages 1038-1051.
  3. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
  4. Su, Wen & Zhao, Li & Deng, Shuai, 2017. "Simultaneous working fluids design and cycle optimization for Organic Rankine cycle using group contribution model," Applied Energy, Elsevier, vol. 202(C), pages 618-627.
  5. Huang, Yisheng & Chen, Jianyong & Chen, Ying & Luo, Xianglong & Liang, Yingzong & He, Jiacheng & Yang, Zhi, 2022. "Performance explorations of an organic Rankine cycle featured with separating and mixing composition of zeotropic mixture," Energy, Elsevier, vol. 257(C).
  6. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
  7. Wang, Enhua & Yu, Zhibin, 2016. "A numerical analysis of a composition-adjustable Kalina cycle power plant for power generation from low-temperature geothermal sources," Applied Energy, Elsevier, vol. 180(C), pages 834-848.
  8. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
  9. Peter Collings & Zhibin Yu, 2017. "Numerical Analysis of an Organic Rankine Cycle with Adjustable Working Fluid Composition, a Volumetric Expander and a Recuperator," Energies, MDPI, vol. 10(4), pages 1-21, March.
  10. Li, Jian & Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2017. "Performance analysis of organic Rankine cycles using R600/R601a mixtures with liquid-separated condensation," Applied Energy, Elsevier, vol. 190(C), pages 376-389.
  11. Krail, Jürgen & Beckmann, Georg & Schittl, Florian & Piringer, Gerhard, 2023. "Comparative thermodynamic analysis of an improved ORC process with integrated injection of process fluid," Energy, Elsevier, vol. 266(C).
  12. Wang, Shukun & Zhang, Lu & Liu, Chao & Liu, Zuming & Lan, Song & Li, Qibin & Wang, Xiaonan, 2021. "Techno-economic-environmental evaluation of a combined cooling heating and power system for gas turbine waste heat recovery," Energy, Elsevier, vol. 231(C).
  13. Peris, Bernardo & Navarro-Esbrí, Joaquín & Mateu-Royo, Carlos & Mota-Babiloni, Adrián & Molés, Francisco & Gutiérrez-Trashorras, Antonio J. & Amat-Albuixech, Marta, 2020. "Thermo-economic optimization of small-scale Organic Rankine Cycle: A case study for low-grade industrial waste heat recovery," Energy, Elsevier, vol. 213(C).
  14. Andrea Colantoni & Mauro Villarini & Vera Marcantonio & Francesco Gallucci & Massimo Cecchini, 2019. "Performance Analysis of a Small-Scale ORC Trigeneration System Powered by the Combustion of Olive Pomace," Energies, MDPI, vol. 12(12), pages 1-12, June.
  15. Xu, Weicong & Deng, Shuai & Su, Wen & Zhang, Ying & Zhao, Li & Yu, Zhixin, 2018. "How to approach Carnot cycle via zeotropic working fluid: Research methodology and case study," Energy, Elsevier, vol. 144(C), pages 576-586.
  16. Shuang Wang & Wei Zhang & Yong-Qiang Feng & Xin Wang & Qian Wang & Yu-Zhuang Liu & Yu Wang & Lin Yao, 2020. "Entropy, Entransy and Exergy Analysis of a Dual-Loop Organic Rankine Cycle (DORC) Using Mixture Working Fluids for Engine Waste Heat Recovery," Energies, MDPI, vol. 13(6), pages 1-25, March.
  17. Magdalena Santos-Rodriguez, M. & Flores-Tlacuahuac, Antonio & Zavala, Victor M., 2017. "A stochastic optimization approach for the design of organic fluid mixtures for low-temperature heat recovery," Applied Energy, Elsevier, vol. 198(C), pages 145-159.
  18. Li, Zhouhang & Tang, Guoli & Wu, Yuxin & Zhai, Yuling & Xu, Jianxin & Wang, Hua & Lu, Junfu, 2016. "Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement," Applied Energy, Elsevier, vol. 178(C), pages 126-141.
  19. Yang, Fubin & Cho, Heejin & Zhang, Hongguang & Zhang, Jian, 2017. "Thermoeconomic multi-objective optimization of a dual loop organic Rankine cycle (ORC) for CNG engine waste heat recovery," Applied Energy, Elsevier, vol. 205(C), pages 1100-1118.
  20. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
  21. Yang, Liu & Su, Zixiang, 2022. "An eco-friendly and efficient trigeneration system for dual-fuel marine engine considering heat storage and energy deployment," Energy, Elsevier, vol. 239(PA).
  22. Costante Invernizzi & Marco Binotti & Paola Bombarda & Gioele Di Marcoberardino & Paolo Iora & Giampaolo Manzolini, 2019. "Water Mixtures as Working Fluids in Organic Rankine Cycles," Energies, MDPI, vol. 12(13), pages 1-17, July.
  23. Tang, Changlong & Hu, Fan & Zhou, Xiaoguang & Li, Yajun, 2022. "Optimization methods for flexibility and stability related to the operation of LNG receiving terminals," Energy, Elsevier, vol. 250(C).
  24. Kunteng Huang & Weicong Xu & Shuai Deng & Jianyuan Zhang & Ruihua Chen & Li Zhao, 2024. "Enhancing Thermal Performance of Thermodynamic Cycle through Zeotropic Mixture Composition Regulation: An Overview," Energies, MDPI, vol. 17(7), pages 1-20, April.
  25. Hao Yu & Xinli Lu & Wei Zhang & Jiali Liu, 2024. "A Theoretical Study on the Thermal Performance of an Increasing Pressure Endothermic Cycle for Geothermal Power Generation," Energies, MDPI, vol. 17(5), pages 1-24, February.
  26. Xu, Weicong & Deng, Shuai & Zhao, Li & Zhang, Yue & Li, Shuangjun, 2019. "Performance analysis on novel thermodynamic cycle under the guidance of 3D construction method," Applied Energy, Elsevier, vol. 250(C), pages 478-492.
  27. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
  28. Wang, Enhua & Zhang, Mengru & Meng, Fanxiao & Zhang, Hongguang, 2022. "Zeotropic working fluid selection for an organic Rankine cycle bottoming with a marine engine," Energy, Elsevier, vol. 243(C).
  29. Lai, Xi & Zhao, Li & Nie, Xianhua & Zhang, Yue & Zhang, Qi, 2023. "Hydrate-based composition separation of R32/R1234yf mixed working fluids applied in composition-adjustable organic Rankine cycle," Energy, Elsevier, vol. 284(C).
  30. Rech, Sergio & Zandarin, Simone & Lazzaretto, Andrea & Frangopoulos, Christos A., 2017. "Design and off-design models of single and two-stage ORC systems on board a LNG carrier for the search of the optimal performance and control strategy," Applied Energy, Elsevier, vol. 204(C), pages 221-241.
  31. Bu, Shujuan & Yang, Xinle & Li, Weikang & Su, Chang & Dai, Wenzhi & Wang, Xin & Liu, Xunan & Tang, Meiling, 2023. "Energy, exergy, exergoeconomic, economic, and environmental analyses and multiobjective optimization of a SCMR–ORC system with zeotropic mixtures," Energy, Elsevier, vol. 263(PC).
  32. Sun, Xiaocun & Shi, Lingfeng & Tian, Hua & Wang, Xuan & Zhang, Yonghao & Yao, Yu & Sun, Rui & Shu, Gequn, 2022. "Analysis of an ideal composition tunable combined cooling and power cycle with CO2-based mixture," Energy, Elsevier, vol. 255(C).
  33. Liu, Changwei & Gao, Tieyu, 2019. "Off-design performance analysis of basic ORC, ORC using zeotropic mixtures and composition-adjustable ORC under optimal control strategy," Energy, Elsevier, vol. 171(C), pages 95-108.
  34. Marenco-Porto, Carlos A. & Fierro, José J. & Nieto-Londoño, César & Lopera, Leonardo & Escudero-Atehortua, Ana & Giraldo, Mauricio & Jouhara, Hussam, 2023. "Potential savings in the cement industry using waste heat recovery technologies," Energy, Elsevier, vol. 279(C).
  35. Xu, Weicong & Zhao, Ruikai & Deng, Shuai & Zhao, Li & Mao, Samuel S., 2021. "Is zeotropic working fluid a promising option for organic Rankine cycle: A quantitative evaluation based on literature data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  36. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Yang, Huya & Zuo, Qingsong & Liu, Zhipeng, 2022. "Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method," Energy, Elsevier, vol. 245(C).
  37. Dong, Shengming & Hu, Xiaowei & Huang, Jun Fang & Zhu, Tingting & Zhang, Yufeng & Li, Xiang, 2021. "Investigation on improvement potential of ORC system off-design performance by expander speed regulation based on theoretical and experimental exergy-energy analyses," Energy, Elsevier, vol. 220(C).
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.