IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v136y2014icp1174-1183.html
   My bibliography  Save this item

A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Guo, Jian-Xin & Zhu, Kaiwei & Tan, Xianchun & Gu, Baihe, 2021. "Low-carbon technology development under multiple adoption risks," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
  2. Dehghan, Hamed & Amin-Naseri, Mohammad Reza & Nahavandi, Nasim, 2021. "A system dynamics model to analyze future electricity supply and demand in Iran under alternative pricing policies," Utilities Policy, Elsevier, vol. 69(C).
  3. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
  4. Li, Nan & Chen, Wenying, 2019. "Energy-water nexus in China's energy bases: From the Paris agreement to the Well Below 2 Degrees target," Energy, Elsevier, vol. 166(C), pages 277-286.
  5. Liu, Xiong & Chen, Lingen & Qin, Xiaoyong & Sun, Fengrui, 2015. "Exergy loss minimization for a blast furnace with comparative analyses for energy flows and exergy flows," Energy, Elsevier, vol. 93(P1), pages 10-19.
  6. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
  7. He, Kun & Zhu, Hongliang & Wang, Li, 2015. "A new coal gas utilization mode in China’s steel industry and its effect on power grid balancing and emission reduction," Applied Energy, Elsevier, vol. 154(C), pages 644-650.
  8. Huang, Weilong & Chen, Wenying & Anandarajah, Gabrial, 2017. "The role of technology diffusion in a decarbonizing world to limit global warming to well below 2 °C: An assessment with application of Global TIMES model," Applied Energy, Elsevier, vol. 208(C), pages 291-301.
  9. Matino, Ismael & Dettori, Stefano & Colla, Valentina & Weber, Valentine & Salame, Sahar, 2019. "Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  10. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
  11. Li, Zhaoling & Dai, Hancheng & Song, Junnian & Sun, Lu & Geng, Yong & Lu, Keyu & Hanaoka, Tatsuya, 2019. "Assessment of the carbon emissions reduction potential of China's iron and steel industry based on a simulation analysis," Energy, Elsevier, vol. 183(C), pages 279-290.
  12. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
  13. Chen, Lingen & Shen, Xun & Xia, Shaojun & Sun, Fengrui, 2017. "Thermodynamic analyses for recovering residual heat of high-temperature basic oxygen gas (BOG) by the methane reforming with carbon dioxide reaction," Energy, Elsevier, vol. 118(C), pages 906-913.
  14. Wang, Yufei & Li, Huimin & Song, Qijiao & Qi, Ye, 2017. "The consequence of energy policies in China: A case study of the iron and steel sector," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 66-73.
  15. Li, Nan & Chen, Wenying, 2018. "Modeling China’s interprovincial coal transportation under low carbon transition," Applied Energy, Elsevier, vol. 222(C), pages 267-279.
  16. Serrenho, André Cabrera & Mourão, Zenaida Sobral & Norman, Jonathan & Cullen, Jonathan M. & Allwood, Julian M., 2016. "The influence of UK emissions reduction targets on the emissions of the global steel industry," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 174-184.
  17. Tingting Xiao & Zhong Liu, 2023. "Air Pollution and Enterprise Energy Efficiency: Evidence from Energy-Intensive Manufacturing Industries in China," Sustainability, MDPI, vol. 15(7), pages 1-17, April.
  18. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
  19. Lijing Zhang & Shuke Fu & Jiali Tian & Jiachao Peng, 2022. "A Review of Energy Industry Chain and Energy Supply Chain," Energies, MDPI, vol. 15(23), pages 1-21, December.
  20. Dayong Wu & Changwei Yuan & Hongchao Liu, 2018. "The decoupling states of CO2 emissions in the Chinese transport sector from 1994 to 2012: A perspective on fuel types," Energy & Environment, , vol. 29(4), pages 591-612, June.
  21. Yılmaz, Kadir & Kayfeci, Muhammet & Keçebaş, Ali, 2019. "Thermodynamic evaluation of a waste gas-fired steam power plant in an iron and steel facility using enhanced exergy analysis," Energy, Elsevier, vol. 169(C), pages 684-695.
  22. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
  23. Matino, Ismael & Colla, Valentina & Baragiola, Stefano, 2017. "Quantification of energy and environmental impacts in uncommon electric steelmaking scenarios to improve process sustainability," Applied Energy, Elsevier, vol. 207(C), pages 543-552.
  24. Wang, Xiaozhong & Liu, Bin & Wu, Gang & Sun, Yixiang & Guo, Xisheng & Jin, Zhenghui & Xu, Weining & Zhao, Yongzhi & Zhang, Fusuo & Zou, Chunqin & Chen, Xinping, 2018. "Environmental costs and mitigation potential in plastic-greenhouse pepper production system in China: A life cycle assessment," Agricultural Systems, Elsevier, vol. 167(C), pages 186-194.
  25. Tan, Ruipeng & Lin, Boqiang, 2018. "What factors lead to the decline of energy intensity in China's energy intensive industries?," Energy Economics, Elsevier, vol. 71(C), pages 213-221.
  26. Huan Wang & Wenying Chen & Hongjun Zhang & Nan Li, 2020. "Modeling of power sector decarbonization in China: comparisons of early and delayed mitigation towards 2-degree target," Climatic Change, Springer, vol. 162(4), pages 1843-1856, October.
  27. Yong Bian & Zhi Yu & Xuelan Zeng & Jingchun Feng & Chao He, 2018. "Achieving China’s Long-Term Carbon Emission Abatement Targets: A Perspective from Regional Disparity," Sustainability, MDPI, vol. 10(11), pages 1-19, November.
  28. Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.
  29. Ren, Ming & Lu, Pantao & Liu, Xiaorui & Hossain, M.S. & Fang, Yanru & Hanaoka, Tatsuya & O'Gallachoir, Brian & Glynn, James & Dai, Hancheng, 2021. "Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality," Applied Energy, Elsevier, vol. 298(C).
  30. Zhang, Qiang & Chen, Wenying, 2020. "Modeling China’s interprovincial electricity transmission under low carbon transition," Applied Energy, Elsevier, vol. 279(C).
  31. Li Li & Yalin Lei & Dongyang Pan, 2016. "Study of CO 2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 957-970, March.
  32. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
  33. Rongxin Wu & Boqiang Lin, 2022. "Does Energy Efficiency Realize Energy Conservation in the Iron and Steel Industry? A Perspective of Energy Rebound Effect," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
  34. Timilsina, Govind R. & Pang, Jun & Xi, Yang, 2021. "Enhancing the quality of climate policy analysis in China: Linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  35. Li, Nan & Ma, Ding & Chen, Wenying, 2017. "Quantifying the impacts of decarbonisation in China’s cement sector: A perspective from an integrated assessment approach," Applied Energy, Elsevier, vol. 185(P2), pages 1840-1848.
  36. Huang, Weilong & Ma, Ding & Chen, Wenying, 2017. "Connecting water and energy: Assessing the impacts of carbon and water constraints on China’s power sector," Applied Energy, Elsevier, vol. 185(P2), pages 1497-1505.
  37. Wang, Peng & Li, Wen & Kara, Sami, 2017. "Cradle-to-cradle modeling of the future steel flow in China," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 45-57.
  38. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
  39. Hao, Han & Geng, Yong & Hang, Wen, 2016. "GHG emissions from primary aluminum production in China: Regional disparity and policy implications," Applied Energy, Elsevier, vol. 166(C), pages 264-272.
  40. Lv, Yulan & Chen, Wei & Cheng, Jianquan, 2019. "Modelling dynamic impacts of urbanization on disaggregated energy consumption in China: A spatial Durbin modelling and decomposition approach," Energy Policy, Elsevier, vol. 133(C).
  41. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
  42. Yuancheng Lin & Honghua Yang & Linwei Ma & Zheng Li & Weidou Ni, 2021. "Low-Carbon Development for the Iron and Steel Industry in China and the World: Status Quo, Future Vision, and Key Actions," Sustainability, MDPI, vol. 13(22), pages 1-28, November.
  43. Xuan, Yanni & Yue, Qiang, 2017. "Scenario analysis on resource and environmental benefits of imported steel scrap for China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 186-198.
  44. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
  45. Juan Wang & Tao Zhao & Xiaohu Zhang, 2017. "Changes in carbon intensity of China’s energy-intensive industries: a combined decomposition and attribution analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(3), pages 1655-1675, September.
  46. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.
  47. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
  48. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
  49. Wang, Huan & Chen, Wenying, 2019. "Modeling of energy transformation pathways under current policies, NDCs and enhanced NDCs to achieve 2-degree target," Applied Energy, Elsevier, vol. 250(C), pages 549-557.
  50. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
  51. Li, Yibo & Li, Juan & Sun, Mei & Guo, Yanzi & Cheng, Faxin & Gao, Cuixia, 2024. "Analysis of carbon neutrality technology path selection in the steel industry under policy incentives," Energy, Elsevier, vol. 292(C).
  52. Xu, Lei & Chen, Nengcheng & Chen, Zeqiang, 2017. "Will China make a difference in its carbon intensity reduction targets by 2020 and 2030?," Applied Energy, Elsevier, vol. 203(C), pages 874-882.
  53. Wu, Rongxin & Lin, Boqiang, 2021. "Does industrial agglomeration improve effective energy service: An empirical study of China’s iron and steel industry," Applied Energy, Elsevier, vol. 295(C).
  54. Liu, Xiong & Feng, Huijun & Chen, Lingen & Qin, Xiaoyong & Sun, Fengrui, 2016. "Hot metal yield optimization of a blast furnace based on constructal theory," Energy, Elsevier, vol. 104(C), pages 33-41.
  55. Harvey, L.D. Danny, 2024. "A bottom-up assessment of recent (2016–20) energy use by the global iron and steel industry constrained to match a top-down (International Energy Agency) assessment," Energy, Elsevier, vol. 293(C).
  56. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
  57. Zhao, Hongyan & Zhang, Qiang & Huo, Hong & Lin, Jintai & Liu, Zhu & Wang, Haikun & Guan, Dabo & He, Kebin, 2016. "Environment-economy tradeoff for Beijing–Tianjin–Hebei’s exports," Applied Energy, Elsevier, vol. 184(C), pages 926-935.
  58. Li, Shuyi & Cheng, Liang & Liu, Xiaoqiang & Mao, Junya & Wu, Jie & Li, Manchun, 2019. "City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data," Energy, Elsevier, vol. 189(C).
  59. Vaclovas Miškinis & Arvydas Galinis & Inga Konstantinavičiūtė & Vidas Lekavičius & Eimantas Neniškis, 2021. "The Role of Renewable Energy Sources in Dynamics of Energy-Related GHG Emissions in the Baltic States," Sustainability, MDPI, vol. 13(18), pages 1-35, September.
  60. María del P. Pablo-Romero ,, & Rafael Pozo-Barajas & Javier Sánchez-Rivas, 2017. "Relationships between Tourism and Hospitality Sector Electricity Consumption in Spanish Provinces (1999–2013)," Sustainability, MDPI, vol. 9(4), pages 1-12, March.
  61. Gan, Yu & Griffin, W. Michael, 2018. "Analysis of life-cycle GHG emissions for iron ore mining and processing in China—Uncertainty and trends," Resources Policy, Elsevier, vol. 58(C), pages 90-96.
  62. Xuan Yanni & Yue Qiang, 2016. "Retrospective and Prospective Analysis on the Trends of China’s Steel Production," Journal of Systems Science and Information, De Gruyter, vol. 4(4), pages 291-306, August.
  63. Hosain, Md Lokman & Bel Fdhila, Rebei & Daneryd, Anders, 2016. "Heat transfer by liquid jets impinging on a hot flat surface," Applied Energy, Elsevier, vol. 164(C), pages 934-943.
  64. Xu, Bin & Lin, Boqiang, 2016. "Regional differences in the CO2 emissions of China's iron and steel industry: Regional heterogeneity," Energy Policy, Elsevier, vol. 88(C), pages 422-434.
  65. Vögele, Stefan & Grajewski, Matthias & Govorukha, Kristina & Rübbelke, Dirk, 2020. "Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development," Applied Energy, Elsevier, vol. 264(C).
  66. Shao, Tianming & Pan, Xunzhang & Li, Xiang & Zhou, Sheng & Zhang, Shu & Chen, Wenying, 2022. "China's industrial decarbonization in the context of carbon neutrality: A sub-sectoral analysis based on integrated modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  67. Xuan, Yanni & Yue, Qiang, 2016. "Forecast of steel demand and the availability of depreciated steel scrap in China," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 1-12.
  68. Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
  69. Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
  70. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
  71. Li, Nan & Chen, Wenying & Zhang, Qiang, 2020. "Development of China TIMES-30P model and its application to model China's provincial low carbon transformation," Energy Economics, Elsevier, vol. 92(C).
  72. Yan, Junna & Zhao, Tao & Kang, Jidong, 2016. "Sensitivity analysis of technology and supply change for CO2 emission intensity of energy-intensive industries based on input–output model," Applied Energy, Elsevier, vol. 171(C), pages 456-467.
  73. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
  74. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
  75. Song, Weiming & Zhou, Jianan & Li, Yujie & Yang, Jian & Cheng, Rijin, 2021. "New technology for producing high-quality combustible gas by high-temperature reaction of dust-removal coke powder in mixed atmosphere," Energy, Elsevier, vol. 233(C).
  76. Yue, Xiufeng & Deane, J.P. & O'Gallachoir, Brian & Rogan, Fionn, 2020. "Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles," Applied Energy, Elsevier, vol. 276(C).
  77. Sun, Liang & Chen, Wenying, 2017. "Development and application of a multi-stage CCUS source–sink matching model," Applied Energy, Elsevier, vol. 185(P2), pages 1424-1432.
  78. Zhang, Hanxin & Sun, Wenqiang & Li, Weidong & Ma, Guangyu, 2022. "A carbon flow tracing and carbon accounting method for exploring CO2 emissions of the iron and steel industry: An integrated material–energy–carbon hub," Applied Energy, Elsevier, vol. 309(C).
  79. Lee, Hwarang & Eom, Jiyong & Cho, Cheolhung & Koo, Yoonmo, 2019. "A bottom-up model of industrial energy system with positive mathematical programming," Energy, Elsevier, vol. 173(C), pages 679-690.
  80. Cheng, Zhilong & Wang, Jingyu & Wei, Shangshang & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2017. "Optimization of gaseous fuel injection for saving energy consumption and improving imbalance of heat distribution in iron ore sintering," Applied Energy, Elsevier, vol. 207(C), pages 230-242.
  81. Xi Qin & Xiaoling Wang & Yusen Xu & Yawen Wei, 2019. "Exploring Driving Forces of Green Growth: Empirical Analysis on China’s Iron and Steel Industry," Sustainability, MDPI, vol. 11(4), pages 1-11, February.
  82. Zetterholm, J. & Ji, X. & Sundelin, B. & Martin, P.M. & Wang, C., 2017. "Dynamic modelling for the hot blast stove," Applied Energy, Elsevier, vol. 185(P2), pages 2142-2150.
  83. Hao Hao & Haolong Wu & Fangfang Wei & Zhaoran Xu & Yi Xu, 2024. "Scrap Steel Recycling: A Carbon Emission Reduction Index for China," Sustainability, MDPI, vol. 16(10), pages 1-17, May.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.