IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v81y2016i2d10.1007_s11069-015-2114-y.html
   My bibliography  Save this article

Study of CO2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment

Author

Listed:
  • Li Li

    (China University of Geosciences
    Ministry of Land and Resource)

  • Yalin Lei

    (China University of Geosciences
    Ministry of Land and Resource)

  • Dongyang Pan

    (Central University of Finance and Economics)

Abstract

With the growing demand, China’s iron and steel industry has obtained rapid development since the 1990s. China’s steel output reached 220 million tons for the first time in 2003, becoming the first country whose annual production exceeded 200 million tons. The iron and steel is an industry of high energy consumption, high pollution and high emissions which has attracted deep concern of Chinese government. Previous research has estimated the direct CO2 emissions in individual processes of iron and steel production, while research on the indirect CO2 emissions from the related sectors of the iron and steel industry is scarce. To explore the whole CO2 emissions, this paper evaluates the direct and indirect carbon emissions in the iron and steel industry and carbon emission deduction by building an economic input–output life cycle assessment (EIO-LCA) model based on the latest available data of the input–output extension table in 2010 and China’s Energy Statistical Yearbook in 2011. The results show that coke and coal produce the most direct CO2 emissions and raw chemical materials, medical and chemical fiber manufacturing, transportation storage and the postal industry, the electricity heat production and supply industry, nonmetal mineral production, petroleum processing of coke and nuclear fuel processing, coal mining and dressing are the six sectors that produce the largest indirect CO2 emissions among the 35 sectors in the iron and steel industry. Based on the results, we suggest that China should (1) improve the quality of coke and coal, increase the efficiency of coke and coal, coal blending technology and the cokes’ strength, and employ the scrap or cities’ minerals as main raw materials in the production, and at the same time, the government and enterprises may increase to invest in technology innovation; (2) and use high-strength iron and steel instead of the ordinary one. Meanwhile, the spatial distributions of the six sectors are mainly concentrated in Shandong Province, Jiangsu Province, Zhejiang Province and Shanxi Province. Shandong Province, Jiangsu Province, Zhejiang Province and Shanxi Province may adjust their industrial structure by increasing the proportion of the third industry and accelerating the development of high-tech industries and services.

Suggested Citation

  • Li Li & Yalin Lei & Dongyang Pan, 2016. "Study of CO2 emissions in China’s iron and steel industry based on economic input–output life cycle assessment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(2), pages 957-970, March.
  • Handle: RePEc:spr:nathaz:v:81:y:2016:i:2:d:10.1007_s11069-015-2114-y
    DOI: 10.1007/s11069-015-2114-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-015-2114-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-015-2114-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gielen, Dolf & Moriguchi, Yuichi, 2002. "CO2 in the iron and steel industry: an analysis of Japanese emission reduction potentials," Energy Policy, Elsevier, vol. 30(10), pages 849-863, August.
    2. Zhaohua Wang & Wei Liu & Jianhua Yin, 2015. "Driving forces of indirect carbon emissions from household consumption in China: an input–output decomposition analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 257-272, February.
    3. Tian, Yihui & Zhu, Qinghua & Geng, Yong, 2013. "An analysis of energy-related greenhouse gas emissions in the Chinese iron and steel industry," Energy Policy, Elsevier, vol. 56(C), pages 352-361.
    4. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    5. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    6. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mukul Sanwal & Xinzhu Zheng, 2018. "China’s changing economy and emissions trajectory: following global trends," Climate Policy, Taylor & Francis Journals, vol. 18(1), pages 36-41, January.
    2. Kyunsuk Choi & Hiroyuki Matsuura & Hyunjoung Lee & Il Sohn, 2016. "Achieving a Carbon Neutral Society without Industry Contraction in the Five Major Steel Producing Countries," Sustainability, MDPI, vol. 8(5), pages 1-18, May.
    3. Li, Zhaoling & Dai, Hancheng & Song, Junnian & Sun, Lu & Geng, Yong & Lu, Keyu & Hanaoka, Tatsuya, 2019. "Assessment of the carbon emissions reduction potential of China's iron and steel industry based on a simulation analysis," Energy, Elsevier, vol. 183(C), pages 279-290.
    4. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
    5. Pietro A. Renzulli & Bruno Notarnicola & Giuseppe Tassielli & Gabriella Arcese & Rosa Di Capua, 2016. "Life Cycle Assessment of Steel Produced in an Italian Integrated Steel Mill," Sustainability, MDPI, vol. 8(8), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    2. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    3. Li, Zhaoling & Dai, Hancheng & Song, Junnian & Sun, Lu & Geng, Yong & Lu, Keyu & Hanaoka, Tatsuya, 2019. "Assessment of the carbon emissions reduction potential of China's iron and steel industry based on a simulation analysis," Energy, Elsevier, vol. 183(C), pages 279-290.
    4. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
    5. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    6. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    7. Lin, Boqiang & Wang, Xiaolei, 2015. "Carbon emissions from energy intensive industry in China: Evidence from the iron & steel industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 746-754.
    8. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    9. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    10. Wang, Peng & Jiang, Zeyi & Geng, Xinyi & Hao, Shiyu & Zhang, Xinxin, 2014. "Quantification of Chinese steel cycle flow: Historical status and future options," Resources, Conservation & Recycling, Elsevier, vol. 87(C), pages 191-199.
    11. Pardo, Nicolás & Moya, José Antonio, 2013. "Prospective scenarios on energy efficiency and CO2 emissions in the European Iron & Steel industry," Energy, Elsevier, vol. 54(C), pages 113-128.
    12. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
    13. Zuoxi Liu & Huijuan Dong & Yong Geng & Chengpeng Lu & Wanxia Ren, 2014. "Insights into the Regional Greenhouse Gas (GHG) Emission of Industrial Processes: A Case Study of Shenyang, China," Sustainability, MDPI, vol. 6(6), pages 1-17, June.
    14. Xuan, Yanni & Yue, Qiang, 2016. "Forecast of steel demand and the availability of depreciated steel scrap in China," Resources, Conservation & Recycling, Elsevier, vol. 109(C), pages 1-12.
    15. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.
    16. Yuhuan Zhao & Hao Li & Zhonghua Zhang & Yongfeng Zhang & Song Wang & Ya Liu, 2017. "Decomposition and scenario analysis of CO2 emissions in China’s power industry: based on LMDI method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(2), pages 645-668, March.
    17. Vögele, Stefan & Grajewski, Matthias & Govorukha, Kristina & Rübbelke, Dirk, 2020. "Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development," Applied Energy, Elsevier, vol. 264(C).
    18. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    19. Shan, Yuli & Liu, Zhu & Guan, Dabo, 2016. "CO2 emissions from China’s lime industry," Applied Energy, Elsevier, vol. 166(C), pages 245-252.
    20. Ansari, Nastaran & Seifi, Abbas, 2012. "A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry," Energy, Elsevier, vol. 43(1), pages 334-343.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:81:y:2016:i:2:d:10.1007_s11069-015-2114-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.