IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v264y2020ics0306261920301458.html
   My bibliography  Save this article

Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development

Author

Listed:
  • Vögele, Stefan
  • Grajewski, Matthias
  • Govorukha, Kristina
  • Rübbelke, Dirk

Abstract

The steel industry in the European Union (EU), important for the economy as a whole, faces various challenges. These are inter alia volatile prices for relevant input factors, uncertainties concerning the regulation of CO2-emissions and market shocks caused by the recently introduced additional import duties in the US, which is an important sales market. We examine primary and secondary effects of these challenges on the steel industry in the EU and their impacts on European and global level. Developing and using a suitable meta-model, we analyze the competitiveness of key steel producing countries with respect to floor prices depending on selected cost factors and draw conclusions on the impacts in the trade of steel on emissions, energy demand, on the involvement of developing countries in the value chain as well on the need for innovations to avoid relocations of production. Hence, our study contributes to the assessment of sustainable industrial development, which is aimed by the Sustainability Development Goal “Build resilient infrastructure, promote inclusive and sustainable industrialization and foster innovation countries”. By applying information on country-specific Human Development Indexes (reflecting aspects of life expectancy, education, and per capita income), we show that relocating energy-intensive industries from the EU may not only increase global energy demand and CO2-emissions, but may also be to the disadvantage of developing countries.

Suggested Citation

  • Vögele, Stefan & Grajewski, Matthias & Govorukha, Kristina & Rübbelke, Dirk, 2020. "Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development," Applied Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920301458
    DOI: 10.1016/j.apenergy.2020.114633
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920301458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114633?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rentier, Gerrit & Lelieveldt, Herman & Kramer, Gert Jan, 2019. "Varieties of coal-fired power phase-out across Europe," Energy Policy, Elsevier, vol. 132(C), pages 620-632.
    2. Joachim Schleich, 2007. "Determinants of structural change and innovation in the German steel industry – an empirical investigation," International Journal of Public Policy, Inderscience Enterprises Ltd, vol. 2(1/2), pages 109-123.
    3. Frédéric Branger, Philippe Quirion, Julien Chevallier, 2017. "Carbon Leakage and Competitiveness of Cement and Steel Industries Under the EU ETS: Much Ado About Nothing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    4. Cai, Wenjia & Wang, Can & Wang, Ke & Zhang, Ying & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's electricity sector," Energy Policy, Elsevier, vol. 35(12), pages 6445-6456, December.
    5. Ma, Jinlong & Evans, David G. & Fuller, Robert J. & Stewart, Donald F., 2002. "Technical efficiency and productivity change of China's iron and steel industry," International Journal of Production Economics, Elsevier, vol. 76(3), pages 293-312, April.
    6. Karsten Neuhoff & Andrzej Ancygier & Jean-Pierre Ponssard & Philippe Quirion & Nagore Sabio & Oliver Sartor & Misato Sato & Anne Schopp, 2015. "Modernization and Innovation in the Materials Sector: Lessons from Steel and Cement," DIW Economic Bulletin, DIW Berlin, German Institute for Economic Research, vol. 5(28/29), pages 387-395.
    7. Price, L & Sinton, J & Worrell, E & Phylipsen, D & Xiulian, H & Ji, L, 2002. "Energy use and carbon dioxide emissions from steel production in China," Energy, Elsevier, vol. 27(5), pages 429-446.
    8. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    9. Knut Einar Rosendahl, 2019. "EU ETS and the waterbed effect," Nature Climate Change, Nature, vol. 9(10), pages 734-735, October.
    10. Oda, Junichiro & Akimoto, Keigo & Tomoda, Toshimasa & Nagashima, Miyuki & Wada, Kenichi & Sano, Fuminori, 2012. "International comparisons of energy efficiency in power, steel, and cement industries," Energy Policy, Elsevier, vol. 44(C), pages 118-129.
    11. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    12. Oda, Junichiro & Akimoto, Keigo & Sano, Fuminori & Tomoda, Toshimasa, 2007. "Diffusion of energy efficient technologies and CO2 emission reductions in iron and steel sector," Energy Economics, Elsevier, vol. 29(4), pages 868-888, July.
    13. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    14. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    15. Karali, Nihan & Xu, Tengfang & Sathaye, Jayant, 2014. "Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 120(C), pages 133-146.
    16. Kim, Yeonbae & Worrell, Ernst, 2002. "International comparison of CO2 emission trends in the iron and steel industry," Energy Policy, Elsevier, vol. 30(10), pages 827-838, August.
    17. Xu, Tengfang & Karali, Nihan & Sathaye, Jayant, 2014. "Undertaking high impact strategies: The role of national efficiency measures in long-term energy and emission reduction in steel making," Applied Energy, Elsevier, vol. 122(C), pages 179-188.
    18. Wang, Ke & Wang, Can & Lu, Xuedu & Chen, Jining, 2007. "Scenario analysis on CO2 emissions reduction potential in China's iron and steel industry," Energy Policy, Elsevier, vol. 35(4), pages 2320-2335, April.
    19. Wu, Xuecheng & Zhao, Liang & Zhang, Yongxin & Zhao, Lingjie & Zheng, Chenghang & Gao, Xiang & Cen, Kefa, 2016. "Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China," Applied Energy, Elsevier, vol. 184(C), pages 171-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haiyang Shang & Fang Su & Serhat Yüksel & Hasan Dinçer, 2021. "Identifying the Strategic Priorities of the Technical Factors for the Sustainable Low Carbon Industry Based on Macroeconomic Conditions," SAGE Open, , vol. 11(2), pages 21582440211, May.
    2. Michele Andreotti & Carlo Brondi & Davide Micillo & Ron Zevenhoven & Johannes Rieger & Ayoung Jo & Anne-Laure Hettinger & Jan Bollen & Enrico Malfa & Claudio Trevisan & Klaus Peters & Delphine Snaet &, 2023. "SDGs in the EU Steel Sector: A Critical Review of Sustainability Initiatives and Approaches," Sustainability, MDPI, vol. 15(9), pages 1-23, May.
    3. Konstantinos Koasidis & Alexandros Nikas & Hera Neofytou & Anastasios Karamaneas & Ajay Gambhir & Jakob Wachsmuth & Haris Doukas, 2020. "The UK and German Low-Carbon Industry Transitions from a Sectoral Innovation and System Failures Perspective," Energies, MDPI, vol. 13(19), pages 1-34, September.
    4. S. Vögele & K. Govorukha & P. Mayer & I. Rhoden & D. Rübbelke & W. Kuckshinrichs, 2023. "Effects of a coal phase-out in Europe on reaching the UN Sustainable Development Goals," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 879-916, January.
    5. Lee, Hwarang, 2023. "Decarbonization strategies for steel production with uncertainty in hydrogen direct reduction," Energy, Elsevier, vol. 283(C).
    6. Skoczkowski, Tadeusz & Verdolini, Elena & Bielecki, Sławomir & Kochański, Max & Korczak, Katarzyna & Węglarz, Arkadiusz, 2020. "Technology innovation system analysis of decarbonisation options in the EU steel industry," Energy, Elsevier, vol. 212(C).
    7. Boldrini, Annika & Koolen, Derck & Crijns-Graus, Wina & van den Broek, Machteld, 2024. "The impact of decarbonising the iron and steel industry on European power and hydrogen systems," Applied Energy, Elsevier, vol. 361(C).
    8. Egerer, Jonas & Farhang-Damghani, Nima & Grimm, Veronika & Runge, Philipp, 2024. "The industry transformation from fossil fuels to hydrogen will reorganize value chains: Big picture and case studies for Germany," Applied Energy, Elsevier, vol. 358(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    2. Stefan Vögele & Dirk Rübbelke & Kristina Govorukha & Matthias Grajewski, 2020. "Socio-technical scenarios for energy-intensive industries: the future of steel production in Germany," Climatic Change, Springer, vol. 162(4), pages 1763-1778, October.
    3. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    5. Matino, Ismael & Colla, Valentina & Baragiola, Stefano, 2017. "Quantification of energy and environmental impacts in uncommon electric steelmaking scenarios to improve process sustainability," Applied Energy, Elsevier, vol. 207(C), pages 543-552.
    6. Xu, Bin & Lin, Boqiang, 2016. "Assessing CO2 emissions in China’s iron and steel industry: A dynamic vector autoregression model," Applied Energy, Elsevier, vol. 161(C), pages 375-386.
    7. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    8. van Ruijven, Bas J. & van Vuuren, Detlef P. & Boskaljon, Willem & Neelis, Maarten L. & Saygin, Deger & Patel, Martin K., 2016. "Long-term model-based projections of energy use and CO2 emissions from the global steel and cement industries," Resources, Conservation & Recycling, Elsevier, vol. 112(C), pages 15-36.
    9. Flues, Florens & Rübbelke, Dirk & Vögele, Stefan, 2013. "Energy Efficiency and Industrial Output: The Case of the Iron and Steel Industry," Energy: Resources and Markets 162379, Fondazione Eni Enrico Mattei (FEEM).
    10. Feng, Chao & Huang, Jian-Bai & Wang, Miao, 2019. "The sustainability of China’s metal industries: features, challenges and future focuses," Resources Policy, Elsevier, vol. 60(C), pages 215-224.
    11. Zhu, Lei & Zhang, Xiao-Bing & Li, Yuan & Wang, Xu & Guo, Jianxin, 2017. "Can an emission trading scheme promote the withdrawal of outdated capacity in energy-intensive sectors? A case study on China's iron and steel industry," Energy Economics, Elsevier, vol. 63(C), pages 332-347.
    12. Wang, Yufei & Li, Huimin & Song, Qijiao & Qi, Ye, 2017. "The consequence of energy policies in China: A case study of the iron and steel sector," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 66-73.
    13. Elshkaki, Ayman, 2019. "Material-energy-water-carbon nexus in China’s electricity generation system up to 2050," Energy, Elsevier, vol. 189(C).
    14. Xu, Bin & Lin, Boqiang, 2016. "Regional differences in the CO2 emissions of China's iron and steel industry: Regional heterogeneity," Energy Policy, Elsevier, vol. 88(C), pages 422-434.
    15. Liu, Shangwei & Tian, Xin & Cai, Wenjia & Chen, Weiqiang & Wang, Yafei, 2018. "How the transitions in iron and steel and construction material industries impact China’s CO2 emissions: Comprehensive analysis from an inter-sector linked perspective," Applied Energy, Elsevier, vol. 211(C), pages 64-75.
    16. Sheinbaum, Claudia & Ozawa, Leticia & Castillo, Daniel, 2010. "Using logarithmic mean Divisia index to analyze changes in energy use and carbon dioxide emissions in Mexico's iron and steel industry," Energy Economics, Elsevier, vol. 32(6), pages 1337-1344, November.
    17. Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
    18. Yue, Hui & Worrell, Ernst & Crijns-Graus, Wina, 2021. "Impacts of regional industrial electricity savings on the development of future coal capacity per electricity grid and related air pollution emissions – A case study for China," Applied Energy, Elsevier, vol. 282(PB).
    19. Hsu, Chung-Chun & Lo, Shang-Lien, 2017. "The potential for carbon abatement in Taiwan’s steel industry and an analysis of carbon abatement trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1312-1323.
    20. Zhang, Shaohui & Worrell, Ernst & Crijns-Graus, Wina & Wagner, Fabian & Cofala, Janusz, 2014. "Co-benefits of energy efficiency improvement and air pollution abatement in the Chinese iron and steel industry," Energy, Elsevier, vol. 78(C), pages 333-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920301458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.