IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v207y2017icp543-552.html
   My bibliography  Save this article

Quantification of energy and environmental impacts in uncommon electric steelmaking scenarios to improve process sustainability

Author

Listed:
  • Matino, Ismael
  • Colla, Valentina
  • Baragiola, Stefano

Abstract

The electric steel production is in line with the circular economy concept due to the reuse of scrap. However, being energy intensive industries with a significant environmental impact, electric steelworks can increase their competitiveness and environmental sustainability through an adequate management of resource and energy. The paper presents a work related to the quantification of electric energy consumption and environmental impact of unconventional electric steelmaking scenarios while simultaneously monitoring the steel composition. The exploitation of an ad-hoc developed Decision Support Tool highlights that scrap quality strongly affects the monitored energy and environmental parameters (quantified in terms of Key Performance Indicators and aggregated in a Global Index). Moreover, the developed simulations pointed out that the removal of Fe-alloy addition during EAF tapping allows reducing slag and improving the yield by preserving also the steel quality while slightly increasing the electric energy consumption: in countries where the price and the emissions related to the production of electricity are low, this can be a good compromise to improve the environmental sustainability of the sector. The study shows that also limited modifications of the well-known electric steelmaking process could help to increase the sustainability of this energy intensive industrial production route.

Suggested Citation

  • Matino, Ismael & Colla, Valentina & Baragiola, Stefano, 2017. "Quantification of energy and environmental impacts in uncommon electric steelmaking scenarios to improve process sustainability," Applied Energy, Elsevier, vol. 207(C), pages 543-552.
  • Handle: RePEc:eee:appene:v:207:y:2017:i:c:p:543-552
    DOI: 10.1016/j.apenergy.2017.06.088
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917308413
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.06.088?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Porzio, Giacomo Filippo & Colla, Valentina & Fornai, Barbara & Vannucci, Marco & Larsson, Mikael & Stripple, Håkan, 2016. "Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap," Applied Energy, Elsevier, vol. 161(C), pages 656-672.
    2. Kirschen, Marcus & Risonarta, Victor & Pfeifer, Herbert, 2009. "Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry," Energy, Elsevier, vol. 34(9), pages 1065-1072.
    3. Langley, K.F., 1986. "Energy efficiency in the UK iron and steel industry," Applied Energy, Elsevier, vol. 23(2), pages 73-107.
    4. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    5. Li, Yuan & Zhu, Lei, 2014. "Cost of energy saving and CO2 emissions reduction in China’s iron and steel sector," Applied Energy, Elsevier, vol. 130(C), pages 603-616.
    6. Poggi, S., 1990. "Present situation and trend of energy savings in Italian steelmaking," Applied Energy, Elsevier, vol. 36(1-2), pages 47-49.
    7. Karali, Nihan & Xu, Tengfang & Sathaye, Jayant, 2014. "Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 120(C), pages 133-146.
    8. Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
    9. Lin, Yi-Pin & Wang, Wen-Hsian & Pan, Shu-Yuan & Ho, Chang-Ching & Hou, Chin-Jen & Chiang, Pen-Chi, 2016. "Environmental impacts and benefits of organic Rankine cycle power generation technology and wood pellet fuel exemplified by electric arc furnace steel industry," Applied Energy, Elsevier, vol. 183(C), pages 369-379.
    10. Wu, Xuecheng & Zhao, Liang & Zhang, Yongxin & Zhao, Lingjie & Zheng, Chenghang & Gao, Xiang & Cen, Kefa, 2016. "Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China," Applied Energy, Elsevier, vol. 184(C), pages 171-183.
    11. Price, L & Sinton, J & Worrell, E & Phylipsen, D & Xiulian, H & Ji, L, 2002. "Energy use and carbon dioxide emissions from steel production in China," Energy, Elsevier, vol. 27(5), pages 429-446.
    12. Zhang, Jianling & Wang, Guoshun, 2008. "Energy saving technologies and productive efficiency in the Chinese iron and steel sector," Energy, Elsevier, vol. 33(4), pages 525-537.
    13. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matino, Ismael & Dettori, Stefano & Colla, Valentina & Weber, Valentine & Salame, Sahar, 2019. "Forecasting blast furnace gas production and demand through echo state neural network-based models: Pave the way to off-gas optimized management," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Iyad Alawaysheh & Imad Alsyouf & Zain El-Abideen Tahboub & Hossam S. Almahasneh, 2020. "Selecting maintenance practices based on environmental criteria: a comparative analysis of theory and practice in the public transport sector in UAE/DUBAI," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1133-1155, December.
    3. Maurizio Massaro & Silvana Secinaro & Francesca Dal Mas & Valerio Brescia & Davide Calandra, 2021. "Industry 4.0 and circular economy: An exploratory analysis of academic and practitioners' perspectives," Business Strategy and the Environment, Wiley Blackwell, vol. 30(2), pages 1213-1231, February.
    4. Gibb, Duncan & Johnson, Maike & Romaní, Joaquim & Gasia, Jaume & Cabeza, Luisa F. & Seitz, Antje, 2018. "Process integration of thermal energy storage systems – Evaluation methodology and case studies," Applied Energy, Elsevier, vol. 230(C), pages 750-760.
    5. Gonzalez Hernandez, Ana & Lupton, Richard C. & Williams, Chris & Cullen, Jonathan M., 2018. "Control data, Sankey diagrams, and exergy: Assessing the resource efficiency of industrial plants," Applied Energy, Elsevier, vol. 218(C), pages 232-245.
    6. Teresa Annunziata Branca & Barbara Fornai & Valentina Colla & Maria Ilaria Pistelli & Eros Luciano Faraci & Filippo Cirilli & Antonius Johannes Schröder, 2021. "Industrial Symbiosis and Energy Efficiency in European Process Industries: A Review," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    7. Zurano-Cervelló, Patricia & Pozo, Carlos & Mateo-Sanz, Josep María & Jiménez, Laureano & Guillén-Gosálbez, Gonzalo, 2019. "Sustainability efficiency assessment of the electricity mix of the 28 EU member countries combining data envelopment analysis and optimized projections," Energy Policy, Elsevier, vol. 134(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. An, Runying & Yu, Biying & Li, Ru & Wei, Yi-Ming, 2018. "Potential of energy savings and CO2 emission reduction in China’s iron and steel industry," Applied Energy, Elsevier, vol. 226(C), pages 862-880.
    2. Vögele, Stefan & Grajewski, Matthias & Govorukha, Kristina & Rübbelke, Dirk, 2020. "Challenges for the European steel industry: Analysis, possible consequences and impacts on sustainable development," Applied Energy, Elsevier, vol. 264(C).
    3. Wang, Xiaoyang & Yu, Biying & An, Runying & Sun, Feihu & Xu, Shuo, 2022. "An integrated analysis of China’s iron and steel industry towards carbon neutrality," Applied Energy, Elsevier, vol. 322(C).
    4. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    5. Wang, Yufei & Li, Huimin & Song, Qijiao & Qi, Ye, 2017. "The consequence of energy policies in China: A case study of the iron and steel sector," Resources, Conservation & Recycling, Elsevier, vol. 117(PA), pages 66-73.
    6. Sinha, Rakesh Kumar & Chaturvedi, Nitin Dutt, 2019. "A review on carbon emission reduction in industries and planning emission limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    7. Sheinbaum-Pardo, Claudia, 2016. "Decomposition analysis from demand services to material production: The case of CO2 emissions from steel produced for automobiles in Mexico," Applied Energy, Elsevier, vol. 174(C), pages 245-255.
    8. Zhang, Qi & Xu, Jin & Wang, Yujie & Hasanbeigi, Ali & Zhang, Wei & Lu, Hongyou & Arens, Marlene, 2018. "Comprehensive assessment of energy conservation and CO2 emissions mitigation in China’s iron and steel industry based on dynamic material flows," Applied Energy, Elsevier, vol. 209(C), pages 251-265.
    9. Chen, Demin & Lu, Biao & Dai, FangQin & Chen, Guang & Zhang, Xihe, 2018. "Bottleneck of slab thermal efficiency in reheating furnace based on energy apportionment model," Energy, Elsevier, vol. 150(C), pages 1058-1069.
    10. Wang, Yihan & Chen, Chen & Tao, Yuan & Wen, Zongguo & Chen, Bin & Zhang, Hong, 2019. "A many-objective optimization of industrial environmental management using NSGA-III: A case of China’s iron and steel industry," Applied Energy, Elsevier, vol. 242(C), pages 46-56.
    11. Wang, Chunyan & Wang, Ranran & Hertwich, Edgar & Liu, Yi, 2017. "A technology-based analysis of the water-energy-emission nexus of China’s steel industry," Resources, Conservation & Recycling, Elsevier, vol. 124(C), pages 116-128.
    12. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2021. "A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Ünal, Berat Berkan & Onaygil, Sermin & Acuner, Ebru & Cin, Rabia, 2022. "Application of energy efficiency obligation scheme for electricity distribution companies in Turkey," Energy Policy, Elsevier, vol. 163(C).
    14. Fujii, Hidemichi & Kaneko, Shinji & Managi, Shunsuke, 2010. "Changes in environmentally sensitive productivity and technological modernization in China's iron and steel industry in the 1990s," Environment and Development Economics, Cambridge University Press, vol. 15(4), pages 485-504, August.
    15. Xu, Bin & Lin, Boqiang, 2017. "Assessing CO2 emissions in China's iron and steel industry: A nonparametric additive regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 325-337.
    16. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    17. Rodrigues da Silva, Rafael & Mathias, Flavio Roberto de Carvalho & Bajay, Sergio Valdir, 2018. "Potential energy efficiency improvements for the Brazilian iron and steel industry: Fuel and electricity conservation supply curves for integrated steel mills," Energy, Elsevier, vol. 153(C), pages 816-824.
    18. Leonardo Leoni & Alessandra Cantini & Filippo De Carlo & Marcello Salvio & Chiara Martini & Claudia Toro & Fabrizio Martini, 2021. "Energy-Saving Technology Opportunities and Investments of the Italian Foundry Industry," Energies, MDPI, vol. 14(24), pages 1-29, December.
    19. Shuangping Wu & Anjun Xu, 2021. "Calculation Method of Energy Saving in Process Engineering: A Case Study of Iron and Steel Production Process," Energies, MDPI, vol. 14(18), pages 1-15, September.
    20. Duan, Wenjun & Gao, Yunke & Yu, Qingbo & Wu, Tianwei & Wang, Zhimei, 2019. "Numerical simulation of coal gasification in molten slag: Gas-liquid interaction characteristic," Energy, Elsevier, vol. 183(C), pages 1233-1243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:207:y:2017:i:c:p:543-552. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.