IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v151y2021ics1364032121008297.html
   My bibliography  Save this article

Enhancing the quality of climate policy analysis in China: Linking bottom-up and top-down models

Author

Listed:
  • Timilsina, Govind R.
  • Pang, Jun
  • Xi, Yang

Abstract

Macroeconomic models are the most common analytical tools to assess economy-wide impacts of climate change policies. These models are, however, not capable of representing detailed physical characteristics of energy production and combustion technologies and often lead to the overestimation of economic impacts. One solution to address this problem is to link top-down macroeconomic models with bottom-up energy sector models that can represent technological details. This study develops a hybrid model by linking a top-down computable general equilibrium model with a bottom-up energy sector model and implements it to assesses economic impacts of emission reduction targets in China set under the Paris Climate Agreement. Results show that economic impacts assessed by the hybrid model are nearly three times smaller than that assessed by the top-down model alone.

Suggested Citation

  • Timilsina, Govind R. & Pang, Jun & Xi, Yang, 2021. "Enhancing the quality of climate policy analysis in China: Linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008297
    DOI: 10.1016/j.rser.2021.111551
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121008297
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Timilsina,Govinda R. & Pang,Jun & Yang,Xi, 2019. "Linking Top-Down and Bottom-UP Models for Climate Policy Analysis : The Case of China," Policy Research Working Paper Series 8905, The World Bank.
    2. Kiuila, O. & Rutherford, T.F., 2013. "The cost of reducing CO2 emissions: Integrating abatement technologies into economic modeling," Ecological Economics, Elsevier, vol. 87(C), pages 62-71.
    3. Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
    4. Andreas Schafer and Henry D. Jacoby, 2006. "Experiments with a Hybrid CGE-MARKAL Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 171-177.
    5. Chen, Wenying & Yin, Xiang & Ma, Ding, 2014. "A bottom-up analysis of China’s iron and steel industrial energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 136(C), pages 1174-1183.
    6. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    7. Webster, Mort & Paltsev, Sergey & Reilly, John, 2008. "Autonomous efficiency improvement or income elasticity of energy demand: Does it matter?," Energy Economics, Elsevier, vol. 30(6), pages 2785-2798, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Ling & Li, Xiaofan & Cui, Qi & Guan, Bing & Li, Meng & Chen, Hao, 2024. "Decarbonization pathways to subregional carbon neutrality in China based on the top-down multi-regional CGE model: A study of Guangxi," Energy, Elsevier, vol. 294(C).
    2. Ding, Tao & Sun, Yuge & Huang, Can & Mu, Chenlu & Fan, Yuqi & Lin, Jiang & Qin, Yining, 2022. "Pathways of clean energy heating electrification programs for reducing carbon emissions in Northwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Wu, Zemin & Wu, Qiuwei & Yu, Xianyu & Wang, Qunwei & Tan, Jin, 2024. "Exploring phase-out path of China's coal power plants with its dynamic impact on electricity balance," Energy Policy, Elsevier, vol. 187(C).
    4. Zhixing Li & Mimi Tian & Yafei Zhao & Zhao Zhang & Yuxi Ying, 2021. "Development of an Integrated Performance Design Platform for Residential Buildings Based on Climate Adaptability," Energies, MDPI, vol. 14(24), pages 1-44, December.
    5. Aryanpur, Vahid & Fattahi, Mahshid & Mamipour, Siab & Ghahremani, Mahsa & Gallachóir, Brian Ó & Bazilian, Morgan D. & Glynn, James, 2022. "How energy subsidy reform can drive the Iranian power sector towards a low-carbon future," Energy Policy, Elsevier, vol. 169(C).
    6. Lv, Fei & Wu, Qiong & Ren, Hongbo & Zhou, Weisheng & Li, Qifen, 2024. "On the design and analysis of long-term low-carbon roadmaps: A review and evaluation of available energy-economy-environment models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Han & Yang, Lei & Chen, Wenying, 2020. "Modelling national, provincial and city-level low-carbon energy transformation pathways," Energy Policy, Elsevier, vol. 137(C).
    2. Timilsina, Govinda R. & Pang, Jun & Yang, Xi, 2021. "Macroeconomic impacts of power sector reforms in China," Energy Policy, Elsevier, vol. 157(C).
    3. Yang, Xi & Pang, Jun & Teng, Fei & Gong, Ruixin & Springer, Cecilia, 2021. "The environmental co-benefit and economic impact of China's low-carbon pathways: Evidence from linking bottom-up and top-down models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    4. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.
    5. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    6. Yue, Xiufeng & Deane, J.P. & O'Gallachoir, Brian & Rogan, Fionn, 2020. "Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles," Applied Energy, Elsevier, vol. 276(C).
    7. Janos Varga & Werner Roeger & Jan in ’t Veld, 2021. "E-QUEST – A Multi-Region Sectoral Dynamic General Equilibrium Model with Energy Model Description and Applications to Reach the EU Climate Targets," European Economy - Discussion Papers 146, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    8. Soummane, Salaheddine & Ghersi, Frédéric & Lefèvre, Julien, 2019. "Macroeconomic pathways of the Saudi economy: The challenge of global mitigation action versus the opportunity of national energy reforms," Energy Policy, Elsevier, vol. 130(C), pages 263-282.
    9. Huan Wang & Wenying Chen & Hongjun Zhang & Nan Li, 2020. "Modeling of power sector decarbonization in China: comparisons of early and delayed mitigation towards 2-degree target," Climatic Change, Springer, vol. 162(4), pages 1843-1856, October.
    10. Ma, Ding & Chen, Wenying & Yin, Xiang & Wang, Lining, 2016. "Quantifying the co-benefits of decarbonisation in China’s steel sector: An integrated assessment approach," Applied Energy, Elsevier, vol. 162(C), pages 1225-1237.
    11. Shi, Jingcheng & Chen, Wenying & Yin, Xiang, 2016. "Modelling building’s decarbonization with application of China TIMES model," Applied Energy, Elsevier, vol. 162(C), pages 1303-1312.
    12. Wang, Huan & Chen, Wenying & Shi, Jingcheng, 2018. "Low carbon transition of global building sector under 2- and 1.5-degree targets," Applied Energy, Elsevier, vol. 222(C), pages 148-157.
    13. Huang, Weilong & Ma, Ding & Chen, Wenying, 2017. "Connecting water and energy: Assessing the impacts of carbon and water constraints on China’s power sector," Applied Energy, Elsevier, vol. 185(P2), pages 1497-1505.
    14. Wang, Huan & Chen, Wenying, 2019. "Modelling deep decarbonization of industrial energy consumption under 2-degree target: Comparing China, India and Western Europe," Applied Energy, Elsevier, vol. 238(C), pages 1563-1572.
    15. Wang, Huan & Chen, Wenying, 2019. "Modeling of energy transformation pathways under current policies, NDCs and enhanced NDCs to achieve 2-degree target," Applied Energy, Elsevier, vol. 250(C), pages 549-557.
    16. van den Broek, Machteld & Veenendaal, Paul & Koutstaal, Paul & Turkenburg, Wim & Faaij, André, 2011. "Impact of international climate policies on CO2 capture and storage deployment: Illustrated in the Dutch energy system," Energy Policy, Elsevier, vol. 39(4), pages 2000-2019, April.
    17. Zhang, Hongjun & Chen, Wenying & Huang, Weilong, 2016. "TIMES modelling of transport sector in China and USA: Comparisons from a decarbonization perspective," Applied Energy, Elsevier, vol. 162(C), pages 1505-1514.
    18. Li, Nan & Chen, Wenying, 2019. "Energy-water nexus in China's energy bases: From the Paris agreement to the Well Below 2 Degrees target," Energy, Elsevier, vol. 166(C), pages 277-286.
    19. Varga, Janos & Roeger, Werner & in ’t Veld, Jan, 2022. "E-QUEST: A multisector dynamic general equilibrium model with energy and a model-based assessment to reach the EU climate targets," Economic Modelling, Elsevier, vol. 114(C).
    20. Zhang, Qiang & Chen, Wenying, 2020. "Modeling China’s interprovincial electricity transmission under low carbon transition," Applied Energy, Elsevier, vol. 279(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.