IDEAS home Printed from https://ideas.repec.org/r/eee/appene/v112y2013icp274-288.html
   My bibliography  Save this item

Evaluation of the potential of central receiver solar power plants: Configuration, optimization and trends

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. El Hamdani, Fayrouz & Vaudreuil, Sébastien & Abderafi, Souad & Bounahmidi, Tijani, 2021. "Determination of design parameters to minimize LCOE, for a 1 MWe CSP plant in different sites," Renewable Energy, Elsevier, vol. 169(C), pages 1013-1025.
  2. Bo Yang & Mohammad Mohsen Sarafraz & Maziar Arjomandi, 2021. "Thermal Performance Characteristics of a Microchannel Gas Heater for Solar Heating Applications," Energies, MDPI, vol. 14(22), pages 1-14, November.
  3. Gyanendra Singh Sisodia & Isabel Soares & Paula Ferreira, 2016. "The effect of sample size on European Union’s renewable energy investment drivers," Applied Economics, Taylor & Francis Journals, vol. 48(53), pages 5129-5137, November.
  4. González-Roubaud, Edouard & Pérez-Osorio, David & Prieto, Cristina, 2017. "Review of commercial thermal energy storage in concentrated solar power plants: Steam vs. molten salts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 133-148.
  5. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
  6. Cruz, N.C. & Redondo, J.L. & Berenguel, M. & Álvarez, J.D. & Ortigosa, P.M., 2017. "Review of software for optical analyzing and optimizing heliostat fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1001-1018.
  7. Starke, Allan R. & Cardemil, José M. & Escobar, Rodrigo & Colle, Sergio, 2018. "Multi-objective optimization of hybrid CSP+PV system using genetic algorithm," Energy, Elsevier, vol. 147(C), pages 490-503.
  8. Mostafavi Tehrani, S. Saeed & Taylor, Robert A., 2016. "Off-design simulation and performance of molten salt cavity receivers in solar tower plants under realistic operational modes and control strategies," Applied Energy, Elsevier, vol. 179(C), pages 698-715.
  9. Nicolás C. Cruz & José D. Álvarez & Juana L. Redondo & Jesús Fernández-Reche & Manuel Berenguel & Rafael Monterreal & Pilar M. Ortigosa, 2017. "A New Methodology for Building-Up a Robust Model for Heliostat Field Flux Characterization," Energies, MDPI, vol. 10(5), pages 1-17, May.
  10. Li, Qing & Bai, Fengwu & Yang, Bei & Wang, Zhifeng & El Hefni, Baligh & Liu, Sijie & Kubo, Syuichi & Kiriki, Hiroaki & Han, Mingxu, 2016. "Dynamic simulation and experimental validation of an open air receiver and a thermal energy storage system for solar thermal power plant," Applied Energy, Elsevier, vol. 178(C), pages 281-293.
  11. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
  12. Wang, Kun & He, Ya-Ling & Xue, Xiao-Dai & Du, Bao-Cun, 2017. "Multi-objective optimization of the aiming strategy for the solar power tower with a cavity receiver by using the non-dominated sorting genetic algorithm," Applied Energy, Elsevier, vol. 205(C), pages 399-416.
  13. He, Caitou & Duan, Xiaoyue & Zhao, Yuhong & Feng, Jieqing, 2019. "An analytical flux density distribution model with a closed-form expression for a flat heliostat," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
  14. Zaversky, Fritz & Les, Iñigo & Sorbet, Patxi & Sánchez, Marcelino & Valentin, Benoît & Brau, Jean-Florian & Siros, Frédéric, 2020. "The challenge of solar powered combined cycles – Providing dispatchability and increasing efficiency by integrating the open volumetric air receiver technology," Energy, Elsevier, vol. 194(C).
  15. Long, Huan & Zhang, Zijun & Su, Yan, 2014. "Analysis of daily solar power prediction with data-driven approaches," Applied Energy, Elsevier, vol. 126(C), pages 29-37.
  16. Manente, Giovanni & Rech, Sergio & Lazzaretto, Andrea, 2016. "Optimum choice and placement of concentrating solar power technologies in integrated solar combined cycle systems," Renewable Energy, Elsevier, vol. 96(PA), pages 172-189.
  17. Gómez-Hernández, J. & González-Gómez, P.A. & Briongos, J.V. & Santana, D., 2018. "Influence of the steam generator on the exergetic and exergoeconomic analysis of solar tower plants," Energy, Elsevier, vol. 145(C), pages 313-328.
  18. Starke, Allan R. & Cardemil, José M. & Bonini, Vinicius R.B. & Escobar, Rodrigo & Castro-Quijada, Matías & Videla, Álvaro, 2024. "Assessing the performance of novel molten salt mixtures on CSP applications," Applied Energy, Elsevier, vol. 359(C).
  19. Pietzcker, Robert Carl & Stetter, Daniel & Manger, Susanne & Luderer, Gunnar, 2014. "Using the sun to decarbonize the power sector: The economic potential of photovoltaics and concentrating solar power," Applied Energy, Elsevier, vol. 135(C), pages 704-720.
  20. Archibold, Antonio Ramos & Rahman, Muhammad M. & Yogi Goswami, D. & Stefanakos, Elias K., 2015. "The effects of radiative heat transfer during the melting process of a high temperature phase change material confined in a spherical shell," Applied Energy, Elsevier, vol. 138(C), pages 675-684.
  21. Zeng, Zhichen & Ni, Dong & Xiao, Gang, 2022. "Real-time heliostat field aiming strategy optimization based on reinforcement learning," Applied Energy, Elsevier, vol. 307(C).
  22. Huang, Weidong & Sun, Lulening, 2016. "Solar flux density calculation for a heliostat with an elliptical Gaussian distribution source," Applied Energy, Elsevier, vol. 182(C), pages 434-441.
  23. Wang, Kun & He, Ya-Ling & Qiu, Yu & Zhang, Yuwen, 2016. "A novel integrated simulation approach couples MCRT and Gebhart methods to simulate solar radiation transfer in a solar power tower system with a cavity receiver," Renewable Energy, Elsevier, vol. 89(C), pages 93-107.
  24. Wu, Yunna & Geng, Shuai & Zhang, Haobo & Gao, Min, 2014. "Decision framework of solar thermal power plant site selection based on linguistic Choquet operator," Applied Energy, Elsevier, vol. 136(C), pages 303-311.
  25. Wang, Kun & Li, Ming-Jia & Guo, Jia-Qi & Li, Peiwen & Liu, Zhan-Bin, 2018. "A systematic comparison of different S-CO2 Brayton cycle layouts based on multi-objective optimization for applications in solar power tower plants," Applied Energy, Elsevier, vol. 212(C), pages 109-121.
  26. Abdelhady, Suzan, 2021. "Performance and cost evaluation of solar dish power plant: sensitivity analysis of levelized cost of electricity (LCOE) and net present value (NPV)," Renewable Energy, Elsevier, vol. 168(C), pages 332-342.
  27. Pabst, Christoph & Feckler, Gereon & Schmitz, Stefan & Smirnova, Olena & Capuano, Raffaele & Hirth, Peter & Fend, Thomas, 2017. "Experimental performance of an advanced metal volumetric air receiver for Solar Towers," Renewable Energy, Elsevier, vol. 106(C), pages 91-98.
  28. Cruz, N.C. & Salhi, S. & Redondo, J.L. & Álvarez, J.D. & Berenguel, M. & Ortigosa, P.M., 2018. "Hector, a new methodology for continuous and pattern-free heliostat field optimization," Applied Energy, Elsevier, vol. 225(C), pages 1123-1131.
  29. Avila-Marin, Antonio L. & Alvarez de Lara, Monica & Fernandez-Reche, Jesus, 2018. "Experimental results of gradual porosity volumetric air receivers with wire meshes," Renewable Energy, Elsevier, vol. 122(C), pages 339-353.
  30. Avila-Marin, Antonio L. & Caliot, Cyril & Alvarez de Lara, Monica & Fernandez-Reche, Jesus & Montes, Maria Jose & Martinez-Tarifa, Adela, 2019. "Homogeneous equivalent model coupled with P1-approximation for dense wire meshes volumetric air receivers," Renewable Energy, Elsevier, vol. 135(C), pages 908-919.
  31. Adarsh Vaderobli & Dev Parikh & Urmila Diwekar, 2020. "Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions," Energies, MDPI, vol. 13(12), pages 1-17, June.
  32. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
  33. Arnaoutakis, Georgios E. & Katsaprakakis, Dimitris Al. & Christakis, Dimitris G., 2022. "Dynamic modeling of combined concentrating solar tower and parabolic trough for increased day-to-day performance," Applied Energy, Elsevier, vol. 323(C).
  34. Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
  35. Praveen R. P., 2019. "Performance Analysis and Optimization of Central Receiver Solar Thermal Power Plants for Utility Scale Power Generation," Sustainability, MDPI, vol. 12(1), pages 1-16, December.
  36. Boukelia, T.E. & Arslan, O. & Mecibah, M.S., 2017. "Potential assessment of a parabolic trough solar thermal power plant considering hourly analysis: ANN-based approach," Renewable Energy, Elsevier, vol. 105(C), pages 324-333.
  37. Huang, Weidong & Yu, Liang & Hu, Peng, 2019. "An analytical solution for the solar flux density produced by a round focusing heliostat," Renewable Energy, Elsevier, vol. 134(C), pages 306-320.
  38. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
  39. Mihoub, Sofiane & Chermiti, Ali & Beltagy, Hani, 2017. "Methodology of determining the optimum performances of future concentrating solar thermal power plants in Algeria," Energy, Elsevier, vol. 122(C), pages 801-810.
  40. Diago, Miguel & Iniesta, Alberto Crespo & Soum-Glaude, Audrey & Calvet, Nicolas, 2018. "Characterization of desert sand to be used as a high-temperature thermal energy storage medium in particle solar receiver technology," Applied Energy, Elsevier, vol. 216(C), pages 402-413.
  41. Meybodi, Mehdi Aghaei & Beath, Andrew C., 2016. "Impact of cost uncertainties and solar data variations on the economics of central receiver solar power plants: An Australian case study," Renewable Energy, Elsevier, vol. 93(C), pages 510-524.
  42. Sait, Hani H. & Martinez-Val, Jose M. & Abbas, Ruben & Munoz-Anton, Javier, 2015. "Fresnel-based modular solar fields for performance/cost optimization in solar thermal power plants: A comparison with parabolic trough collectors," Applied Energy, Elsevier, vol. 141(C), pages 175-189.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.