IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v106y2017icp91-98.html
   My bibliography  Save this article

Experimental performance of an advanced metal volumetric air receiver for Solar Towers

Author

Listed:
  • Pabst, Christoph
  • Feckler, Gereon
  • Schmitz, Stefan
  • Smirnova, Olena
  • Capuano, Raffaele
  • Hirth, Peter
  • Fend, Thomas

Abstract

Solar Tower Technology is a promising way to generate sustainable electricity from concentrated solar radiation. In one of the most effective variants of this technology, a so called volumetric air receiver is used to convert concentrated radiation into heat. This component consists of a high temperature resistant cellular material which absorbs radiation and transfers the heat to an air flow which is fed from the ambient and from recirculated air. It is called volumetric, because the radiation may penetrate into the “volume” of the receiver through the open, permeable cells of the material. In this way a larger amount of heat transfer surface supports the solid to gaseous heat transfer in comparison to a tubular closed receiver. Finally the heated air is directed to the steam generator of a conventional steam turbine system. In this study an advanced cellular metal honeycomb structure has been designed, manufactured and tested for use as an open volumetric receiver. It consists of winded pairs of flat and corrugated metal foils. The technology is based on a one which has been primarily developed for the treatment of combustion engine exhaust gases. A number of variations of the pure linear honeycomb structure have been introduced to increase local turbulence and radial flow. Firstly, a set of samples has been tested in laboratory scale experiments to determine effective properties and the solar-to-thermal efficiency. After that, results have been compared with theoretical predictions. Finally, the three most promising materials have been used for a 500 kW test on the research platform of the Solar Tower Jülich. Air outlet temperatures of more than 800 °C have been achieved with efficiencies of about 80%, which is about 5% more than the state-of-the-art technology, which is currently used at the main receiver of the Solar Tower. Next to this, lifetime models will be developed to increase the overall reliability of the technology.

Suggested Citation

  • Pabst, Christoph & Feckler, Gereon & Schmitz, Stefan & Smirnova, Olena & Capuano, Raffaele & Hirth, Peter & Fend, Thomas, 2017. "Experimental performance of an advanced metal volumetric air receiver for Solar Towers," Renewable Energy, Elsevier, vol. 106(C), pages 91-98.
  • Handle: RePEc:eee:renene:v:106:y:2017:i:c:p:91-98
    DOI: 10.1016/j.renene.2017.01.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117300162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.01.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fricker, H.W., 2004. "Regenerative thermal storage in atmospheric air system solar power plants," Energy, Elsevier, vol. 29(5), pages 871-881.
    2. Fend, Th. & Schwarzbözl, P. & Smirnova, O. & Schöllgen, D. & Jakob, C., 2013. "Numerical investigation of flow and heat transfer in a volumetric solar receiver," Renewable Energy, Elsevier, vol. 60(C), pages 655-661.
    3. Py, Xavier & Azoumah, Yao & Olives, Régis, 2013. "Concentrated solar power: Current technologies, major innovative issues and applicability to West African countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 306-315.
    4. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Tellez, Felix M., 2013. "Evaluation of the potential of central receiver solar power plants: Configuration, optimization and trends," Applied Energy, Elsevier, vol. 112(C), pages 274-288.
    5. Capuano, Raffaele & Fend, Thomas & Schwarzbözl, Peter & Smirnova, Olena & Stadler, Hannes & Hoffschmidt, Bernhard & Pitz-Paal, Robert, 2016. "Numerical models of advanced ceramic absorbers for volumetric solar receivers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 656-665.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Yang & Mohammad Mohsen Sarafraz & Maziar Arjomandi, 2021. "Thermal Performance Characteristics of a Microchannel Gas Heater for Solar Heating Applications," Energies, MDPI, vol. 14(22), pages 1-14, November.
    2. Sedighi, Mohammadreza & Padilla, Ricardo Vasquez & Alamdari, Pedram & Lake, Maree & Rose, Andrew & Izadgoshasb, Iman & Taylor, Robert A., 2020. "A novel high-temperature (>700 °C), volumetric receiver with a packed bed of transparent and absorbing spheres," Applied Energy, Elsevier, vol. 264(C).
    3. Chen, Sheng & Li, Wenhao & Yan, Fuwu, 2020. "Thermal performance analysis of a porous solar cavity receiver," Renewable Energy, Elsevier, vol. 156(C), pages 558-569.
    4. Wang, P. & Li, J.B. & Xu, R.N. & Jiang, P.X., 2021. "Non-uniform and volumetric effect on the hydrodynamic and thermal characteristic in a unit solar absorber," Energy, Elsevier, vol. 225(C).
    5. Messaoud Hazmoune & Benaoumeur Aour & Xavier Chesneau & Mohammed Debbache & Dana-Alexandra Ciupageanu & Gheorghe Lazaroiu & Mohamed Mondji Hadjiat & Abderrahmane Hamidat, 2020. "Numerical Analysis of a Solar Tower Receiver Novel Design," Sustainability, MDPI, vol. 12(17), pages 1-12, August.
    6. Nakakura, Mitsuho & Matsubara, Koji & Bellan, Selvan & Kodama, Tatsuya, 2020. "Direct simulation of a volumetric solar receiver with different cell sizes at high outlet temperatures (1,000–1,500 °C)," Renewable Energy, Elsevier, vol. 146(C), pages 1143-1152.
    7. Avila-Marin, Antonio L., 2022. "CFD parametric analysis of wire meshes open volumetric receivers with axial-varied porosity and comparison with small-scale solar receiver tests," Renewable Energy, Elsevier, vol. 193(C), pages 1094-1105.
    8. Zaversky, Fritz & Les, Iñigo & Sorbet, Patxi & Sánchez, Marcelino & Valentin, Benoît & Brau, Jean-Florian & Siros, Frédéric, 2020. "The challenge of solar powered combined cycles – Providing dispatchability and increasing efficiency by integrating the open volumetric air receiver technology," Energy, Elsevier, vol. 194(C).
    9. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    10. Broeske, Robin Tim & Schwarzbözl, Peter & Birkigt, Lisa & Vasic, Srdan & Dung, Sebastian & Doerbeck, Till & Hoffschmidt, Bernhard, 2023. "Experimentally assessed efficiency improvement of innovative 3D-shaped structures as volumetric absorbers," Renewable Energy, Elsevier, vol. 218(C).
    11. Rodríguez-Sánchez, M.R. & Sánchez-González, A. & Santana, D., 2019. "Field-receiver model validation against Solar Two tests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 43-52.
    12. Cheilytko, Andrii & Schwarzbözl, Peter & Wieghardt, Kai, 2023. "Modeling of heat conduction processes in porous absorber of open type of solar tower stations," Renewable Energy, Elsevier, vol. 215(C).
    13. Zhu, Qibin & Xuan, Yimin, 2019. "Improving the performance of volumetric solar receivers with a spectrally selective gradual structure and swirling characteristics," Energy, Elsevier, vol. 172(C), pages 467-476.
    14. Li, J.B. & Wang, P. & Liu, D.Y., 2022. "Optimization on the gradually varied pore structure distribution for the irradiated absorber," Energy, Elsevier, vol. 240(C).
    15. Avila-Marin, Antonio L. & Alvarez de Lara, Monica & Fernandez-Reche, Jesus, 2018. "Experimental results of gradual porosity volumetric air receivers with wire meshes," Renewable Energy, Elsevier, vol. 122(C), pages 339-353.
    16. Avila-Marin, Antonio L. & Caliot, Cyril & Alvarez de Lara, Monica & Fernandez-Reche, Jesus & Montes, Maria Jose & Martinez-Tarifa, Adela, 2019. "Homogeneous equivalent model coupled with P1-approximation for dense wire meshes volumetric air receivers," Renewable Energy, Elsevier, vol. 135(C), pages 908-919.
    17. Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
    18. Vishwa Deepak Kumar & Vikas K. Upadhyay & Gurveer Singh & Sudipto Mukhopadhyay & Laltu Chandra, 2022. "Open volumetric air receiver: An innovative application and a major challenge," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 11(1), January.
    19. Du, Shen & Li, Ming-Jia & He, Ya-Ling & Shen, Sheng, 2021. "Conceptual design of porous volumetric solar receiver using molten salt as heat transfer fluid," Applied Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pitot de la Beaujardiere, Jean-Francois P. & Reuter, Hanno C.R., 2018. "A review of performance modelling studies associated with open volumetric receiver CSP plant technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3848-3862.
    2. Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
    3. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Carballo, Jose Antonio & Carra, Maria Elena & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "CFD analysis of the performance impact of geometrical shape on volumetric absorbers in a standard cup," Renewable Energy, Elsevier, vol. 201(P1), pages 256-272.
    4. Zaversky, Fritz & Les, Iñigo & Sorbet, Patxi & Sánchez, Marcelino & Valentin, Benoît & Brau, Jean-Florian & Siros, Frédéric, 2020. "The challenge of solar powered combined cycles – Providing dispatchability and increasing efficiency by integrating the open volumetric air receiver technology," Energy, Elsevier, vol. 194(C).
    5. Navalho, Jorge E.P. & Pereira, José C.F., 2020. "A comprehensive and fully predictive discrete methodology for volumetric solar receivers: application to a functional parabolic dish solar collector system," Applied Energy, Elsevier, vol. 267(C).
    6. Avila-Marin, Antonio L. & Fernandez-Reche, Jesus & Gianella, Sandro & Ferrari, Luca & Sanchez-Señoran, Daniel, 2022. "Experimental study of innovative periodic cellular structures as air volumetric absorbers," Renewable Energy, Elsevier, vol. 184(C), pages 391-404.
    7. Kasaeian, Alibakhsh & Barghamadi, Hossein & Pourfayaz, Fathollah, 2017. "Performance comparison between the geometry models of multi-channel absorbers in solar volumetric receivers," Renewable Energy, Elsevier, vol. 105(C), pages 1-12.
    8. Bo Yang & Mohammad Mohsen Sarafraz & Maziar Arjomandi, 2021. "Thermal Performance Characteristics of a Microchannel Gas Heater for Solar Heating Applications," Energies, MDPI, vol. 14(22), pages 1-14, November.
    9. Avila-Marin, Antonio L. & Caliot, Cyril & Alvarez de Lara, Monica & Fernandez-Reche, Jesus & Montes, Maria Jose & Martinez-Tarifa, Adela, 2019. "Homogeneous equivalent model coupled with P1-approximation for dense wire meshes volumetric air receivers," Renewable Energy, Elsevier, vol. 135(C), pages 908-919.
    10. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    11. Zeng, Zhichen & Ni, Dong & Xiao, Gang, 2022. "Real-time heliostat field aiming strategy optimization based on reinforcement learning," Applied Energy, Elsevier, vol. 307(C).
    12. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    13. Andrade, L.A. & Barrozo, M.A.S. & Vieira, L.G.M., 2016. "A study on dynamic heating in solar dish concentrators," Renewable Energy, Elsevier, vol. 87(P1), pages 501-508.
    14. Wang, Kun & He, Ya-Ling & Zhu, Han-Hui, 2017. "Integration between supercritical CO2 Brayton cycles and molten salt solar power towers: A review and a comprehensive comparison of different cycle layouts," Applied Energy, Elsevier, vol. 195(C), pages 819-836.
    15. Meybodi, Mehdi Aghaei & Beath, Andrew C., 2016. "Impact of cost uncertainties and solar data variations on the economics of central receiver solar power plants: An Australian case study," Renewable Energy, Elsevier, vol. 93(C), pages 510-524.
    16. Ma, Zhao & Li, Ming-Jia & Zhang, K. Max & Yuan, Fan, 2021. "Novel designs of hybrid thermal energy storage system and operation strategies for concentrated solar power plant," Energy, Elsevier, vol. 216(C).
    17. Carlos E. Arreola-Ramos & Omar Álvarez-Brito & Juan Daniel Macías & Aldo Javier Guadarrama-Mendoza & Manuel A. Ramírez-Cabrera & Armando Rojas-Morin & Patricio J. Valadés-Pelayo & Heidi Isabel Villafá, 2021. "Experimental Evaluation and Modeling of Air Heating in a Ceramic Foam Volumetric Absorber by Effective Parameters," Energies, MDPI, vol. 14(9), pages 1-15, April.
    18. Zaversky, Fritz & Aldaz, Leticia & Sánchez, Marcelino & Ávila-Marín, Antonio L. & Roldán, M. Isabel & Fernández-Reche, Jesús & Füssel, Alexander & Beckert, Wieland & Adler, Jörg, 2018. "Numerical and experimental evaluation and optimization of ceramic foam as solar absorber – Single-layer vs multi-layer configurations," Applied Energy, Elsevier, vol. 210(C), pages 351-375.
    19. Arias, I. & Cardemil, J. & Zarza, E. & Valenzuela, L. & Escobar, R., 2022. "Latest developments, assessments and research trends for next generation of concentrated solar power plants using liquid heat transfer fluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Huang, Weidong & Sun, Lulening, 2016. "Solar flux density calculation for a heliostat with an elliptical Gaussian distribution source," Applied Energy, Elsevier, vol. 182(C), pages 434-441.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:106:y:2017:i:c:p:91-98. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.