My bibliography
Save this item
Performance evaluation of AquaCrop model for maize crop in a semi-arid environment
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Umesh, Barikara & Reddy, K.S. & Polisgowdar, B.S. & Maruthi, V. & Satishkumar, U. & Ayyanagoudar, M.S. & Rao, Sathyanarayan & Veeresh, H., 2022. "Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana," Agricultural Water Management, Elsevier, vol. 274(C).
- Wu, Zhangsheng & Li, Yue & Wang, Rong & Xu, Xu & Ren, Dongyang & Huang, Quanzhong & Xiong, Yunwu & Huang, Guanhua, 2023. "Evaluation of irrigation water saving and salinity control practices of maize and sunflower in the upper Yellow River basin with an agro-hydrological model based method," Agricultural Water Management, Elsevier, vol. 278(C).
- Irmak, S. & Sandhu, R. & Kukal, M.S., 2022. "Multi-model projections of trade-offs between irrigated and rainfed maize yields under changing climate and future emission scenarios," Agricultural Water Management, Elsevier, vol. 261(C).
- Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
- Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
- Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
- Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
- Hassanli, Mohammad & Ebrahimian, Hamed & Mohammadi, Ehsan & Rahimi, Amirreza & Shokouhi, Amirhossein, 2016. "Simulating maize yields when irrigating with saline water, using the AquaCrop, SALTMED, and SWAP models," Agricultural Water Management, Elsevier, vol. 176(C), pages 91-99.
- Maniruzzaman, M. & Talukder, M.S.U. & Khan, M.H. & Biswas, J.C. & Nemes, A., 2015. "Validation of the AquaCrop model for irrigated rice production under varied water regimes in Bangladesh," Agricultural Water Management, Elsevier, vol. 159(C), pages 331-340.
- Rui-Feng Wang & Wen-Hao Su, 2024. "The Application of Deep Learning in the Whole Potato Production Chain: A Comprehensive Review," Agriculture, MDPI, vol. 14(8), pages 1-30, July.
- Mohamed Sallah, Abdoul-Hamid & Tychon, Bernard & Piccard, Isabelle & Gobin, Anne & Van Hoolst, Roel & Djaby, Bakary & Wellens, Joost, 2019. "Batch-processing of AquaCrop plug-in for rainfed maize using satellite derived Fractional Vegetation Cover data," Agricultural Water Management, Elsevier, vol. 217(C), pages 346-355.
- Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
- Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
- Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
- Tiecheng Bai & Nannan Zhang & Youqi Chen & Benoit Mercatoris, 2019. "Assessing the Performance of the WOFOST Model in Simulating Jujube Fruit Tree Growth under Different Irrigation Regimes," Sustainability, MDPI, vol. 11(5), pages 1-16, March.
- Voloudakis, Dimitrios & Karamanos, Andreas & Economou, Garifalia & Kalivas, Dionissios & Vahamidis, Petros & Kotoulas, Vasilios & Kapsomenakis, John & Zerefos, Christos, 2015. "Prediction of climate change impacts on cotton yields in Greece under eight climatic models using the AquaCrop crop simulation model and discriminant function analysis," Agricultural Water Management, Elsevier, vol. 147(C), pages 116-128.
- Wang, Youzhi & Guo, Shanshan & Yue, Qing & Mao, Xiaomin & Guo, Ping, 2021. "Distributed AquaCrop simulation-nonlinear multi-objective dependent-chance programming for irrigation water resources management under uncertainty," Agricultural Water Management, Elsevier, vol. 247(C).
- Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
- López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
- Sandhu, Rupinder & Irmak, Suat, 2019. "Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed cond," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
- Kondwani Msowoya & Kaveh Madani & Rahman Davtalab & Ali Mirchi & Jay R. Lund, 2016. "Climate Change Impacts on Maize Production in the Warm Heart of Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5299-5312, November.
- Shrestha, Nirman & Raes, Dirk & Vanuytrecht, Eline & Sah, Shrawan Kumar, 2013. "Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling," Agricultural Water Management, Elsevier, vol. 122(C), pages 53-62.
- Richwell Mubita Mwiya & Zhanyu Zhang & Chengxin Zheng & Ce Wang, 2020. "Comparison of Approaches for Irrigation Scheduling Using AquaCrop and NSGA-III Models under Climate Uncertainty," Sustainability, MDPI, vol. 12(18), pages 1-20, September.
- Pinheiro, Antonio Gebson & Alves, Cleber Pereira & Souza, Carlos André Alves de & Araújo Júnior, George do Nascimento & Jardim, Alexandre Maniçoba da Rosa Ferraz & Morais, José Edson Florentino de & S, 2024. "Calibration and validation of the AquaCrop model for production arrangements of forage cactus and grass in a semi-arid environment," Ecological Modelling, Elsevier, vol. 488(C).
- Bussay, Attila & van der Velde, Marijn & Fumagalli, Davide & Seguini, Lorenzo, 2015. "Improving operational maize yield forecasting in Hungary," Agricultural Systems, Elsevier, vol. 141(C), pages 94-106.
- Shi, Shanheng & Zhou, Shiwei & Lei, Yongdeng & Harrison, Matthew Tom & Liu, Ke & Chen, Fu & Yin, Xiaogang, 2024. "Burgeoning food demand outpaces sustainable water supply in China," Agricultural Water Management, Elsevier, vol. 301(C).
- Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
- Yang, Chenyao & Fraga, Helder & Ieperen, Wim Van & Santos, João Andrade, 2017. "Assessment of irrigated maize yield response to climate change scenarios in Portugal," Agricultural Water Management, Elsevier, vol. 184(C), pages 178-190.
- Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
- Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
- Immaculate Maumoh & Emmanuel H. Yindi, 2021. "Understanding the Farmers, Environmental Citizenship Behaviors Towards Climate Change. The Moderating Mediating Role of Environmental Knowledge and Ascribed Responsibility," Papers 2102.12378, arXiv.org.
- Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
- Emmanuel Lekakis & Athanasios Zaikos & Alexios Polychronidis & Christos Efthimiou & Ioannis Pourikas & Theano Mamouka, 2022. "Evaluation of Different Modelling Techniques with Fusion of Satellite, Soil and Agro-Meteorological Data for the Assessment of Durum Wheat Yield under a Large Scale Application," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
- Wellens, Joost & Raes, Dirk & Traore, Farid & Denis, Antoine & Djaby, Bakary & Tychon, Bernard, 2013. "Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 127(C), pages 40-47.
- Fawen Li & Dong Yu & Yong Zhao, 2019. "Irrigation Scheduling Optimization for Cotton Based on the AquaCrop Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 39-55, January.
- Nyathi, M.K. & van Halsema, G.E. & Annandale, J.G. & Struik, P.C., 2018. "Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 208(C), pages 107-119.
- Tinashe Lindel Dirwai & Aidan Senzanje & Tafadzwanashe Mabhaudhi, 2021. "Calibration and Evaluation of the FAO AquaCrop Model for Canola ( Brassica napus ) under Varied Moistube Irrigation Regimes," Agriculture, MDPI, vol. 11(5), pages 1-18, May.
- Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
- Jia, Zhicheng & Ou, Chengming & Sun, Shoujiang & Sun, Ming & Zhao, Yihong & Li, Changran & Zhao, Shiqiang & Wang, Juan & Jia, Shangang & Mao, Peisheng, 2024. "Optimizing drip irrigation managements to improve alfalfa seed yield in semiarid region," Agricultural Water Management, Elsevier, vol. 297(C).
- Marjan Aziz & Sultan Ahmad Rizvi & Muhammad Sultan & Muhammad Sultan Ali Bazmi & Redmond R. Shamshiri & Sobhy M. Ibrahim & Muhammad A. Imran, 2022. "Simulating Cotton Growth and Productivity Using AquaCrop Model under Deficit Irrigation in a Semi-Arid Climate," Agriculture, MDPI, vol. 12(2), pages 1-18, February.