IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v12y2022i2p242-d744594.html
   My bibliography  Save this article

Simulating Cotton Growth and Productivity Using AquaCrop Model under Deficit Irrigation in a Semi-Arid Climate

Author

Listed:
  • Marjan Aziz

    (Department of Agricultural Engineering, Barani Agricultural Research Institute, Chakwal 48800, Pakistan)

  • Sultan Ahmad Rizvi

    (Water Conservation Division, Soil and Water Conservation Research Institute, Chakwal 48800, Pakistan)

  • Muhammad Sultan

    (Department of Agricultural Engineering, Bahauddin Zakariya University, Bosan Road, Multan 60800, Pakistan)

  • Muhammad Sultan Ali Bazmi

    (Department of Agronomy, Fodder Research Institute, Sargodha 40100, Pakistan)

  • Redmond R. Shamshiri

    (Department of Engineering for Crop Production, Leibniz Institute for Agricultural Engineering and Bioeconomy, 14469 Potsdam, Germany)

  • Sobhy M. Ibrahim

    (Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia)

  • Muhammad A. Imran

    (School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Shaanxi, Xi’an 710055, China)

Abstract

AquaCrop is a water-driven model that simulates the effect of environment and management on crop production under deficit irrigation. The model was calibrated and validated using three databases and four irrigation treatments (i.e., 100%ET, 80%ET, 70%ET, and 50%ET). Model performance was evaluated by simulating canopy cover (CC), biomass accumulation, and water productivity (WP). Statistics of root mean square error ( RMSE ) and Willmott’s index of agreement ( d ) showed that model predictions are suitable for non-stressed and moderate stressed conditions. The results showed that the simulated biomass and yield were consistent with the measured values with a coefficient of determination (R 2 ) of 0.976 and 0.950, respectively. RMSE and d-index values for canopy cover (CC) were 2.67% to 4.47% and 0.991% to 0.998% and for biomass were 0.088 to 0.666 ton/ha and 0.991 to 0.999 ton/ha, respectively. Prediction of simulated and measured biomass and final yield was acceptable with deviation ˂10%. The overall value of R 2 for WP in terms of yield was 0.943. Treatment with 80% ET consumed 20% less water than the treatment with 100%ET and resulted in high WP in terms of yield (0.6 kg/m 3 ) and biomass (1.74 kg/m 3 ), respectively. The deviations were in the range of −2% to 11% in yield and −2% to 4% in biomass. It was concluded that AquaCrop is a useful tool in predicting the productivity of cotton under different irrigation scenarios.

Suggested Citation

  • Marjan Aziz & Sultan Ahmad Rizvi & Muhammad Sultan & Muhammad Sultan Ali Bazmi & Redmond R. Shamshiri & Sobhy M. Ibrahim & Muhammad A. Imran, 2022. "Simulating Cotton Growth and Productivity Using AquaCrop Model under Deficit Irrigation in a Semi-Arid Climate," Agriculture, MDPI, vol. 12(2), pages 1-18, February.
  • Handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:242-:d:744594
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/12/2/242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/12/2/242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Paredes, P. & Wei, Z. & Liu, Y. & Xu, D. & Xin, Y. & Zhang, B. & Pereira, L.S., 2015. "Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain," Agricultural Water Management, Elsevier, vol. 152(C), pages 57-71.
    2. Abedinpour, M. & Sarangi, A. & Rajput, T.B.S. & Singh, Man & Pathak, H. & Ahmad, T., 2012. "Performance evaluation of AquaCrop model for maize crop in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 55-66.
    3. Hafiz Shahzad Ahmad & Muhammad Imran & Fiaz Ahmad & Shah Rukh & Rao Muhammad Ikram & Hafiz Muhammad Rafique & Zafar Iqbal & Abdulaziz Abdullah Alsahli & Mohammed Nasser Alyemeni & Shafaqat Ali & Tanve, 2021. "Improving Water Use Efficiency through Reduced Irrigation for Sustainable Cotton Production," Sustainability, MDPI, vol. 13(7), pages 1-12, April.
    4. Cardinali, Alessandro & Nason, Guy P., 2013. "Costationarity of Locally Stationary Time Series Using costat," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 55(i01).
    5. Tsakmakis, I.D. & Kokkos, N.P. & Gikas, G.D. & Pisinaras, V. & Hatzigiannakis, E. & Arampatzis, G. & Sylaios, G.K., 2019. "Evaluation of AquaCrop model simulations of cotton growth under deficit irrigation with an emphasis on root growth and water extraction patterns," Agricultural Water Management, Elsevier, vol. 213(C), pages 419-432.
    6. Li, Jiamin & Inanaga, Shinobu & Li, Zhaohu & Eneji, A. Egrinya, 2005. "Optimizing irrigation scheduling for winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 76(1), pages 8-23, July.
    7. Marjan Aziz & Sultan Ahmad Rizvi & Muhammad Azhar Iqbal & Sairah Syed & Muhammad Ashraf & Saira Anwer & Muhammad Usman & Nazia Tahir & Azra Khan & Sana Asghar & Jamil Akhtar, 2021. "A Sustainable Irrigation System for Small Landholdings of Rainfed Punjab, Pakistan," Sustainability, MDPI, vol. 13(20), pages 1-15, October.
    8. Qureshi, A.S. & McCornick, P.G. & Qadir, M. & Aslam, Z., 2008. "Managing salinity and waterlogging in the Indus Basin of Pakistan," Agricultural Water Management, Elsevier, vol. 95(1), pages 1-10, January.
    9. Katerji, Nader & Campi, Pasquale & Mastrorilli, Marcello, 2013. "Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region," Agricultural Water Management, Elsevier, vol. 130(C), pages 14-26.
    10. Muhammad N. Ashraf & Muhammad H. Mahmood & Muhammad Sultan & Narges Banaeian & Muhammad Usman & Sobhy M. Ibrahim & Muhammad U. B. U. Butt & Muhammad Waseem & Imran Ali & Aamir Shakoor & Zahid M. Khan, 2020. "Investigation of Input and Output Energy for Wheat Production: A Comprehensive Study for Tehsil Mailsi (Pakistan)," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    11. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Desheng Wang & Chengkun Wang & Lichao Xu & Tiecheng Bai & Guozheng Yang, 2022. "Simulating Growth and Evaluating the Regional Adaptability of Cotton Fields with Non-Film Mulching in Xinjiang," Agriculture, MDPI, vol. 12(7), pages 1-20, June.
    2. Marjan Aziz & Madeeha Khan & Naveeda Anjum & Muhammad Sultan & Redmond R. Shamshiri & Sobhy M. Ibrahim & Siva K. Balasundram & Muhammad Aleem, 2022. "Scientific Irrigation Scheduling for Sustainable Production in Olive Groves," Agriculture, MDPI, vol. 12(4), pages 1-14, April.
    3. Imran Sajid & Bernhard Tischbein & Christian Borgemeister & Martina Flörke, 2022. "Assessing Barriers in Adaptation of Water Management Innovations under Rotational Canal Water Distribution System," Agriculture, MDPI, vol. 12(7), pages 1-16, June.
    4. Haoteng Zhao & Liping Di & Liying Guo & Chen Zhang & Li Lin, 2023. "An Automated Data-Driven Irrigation Scheduling Approach Using Model Simulated Soil Moisture and Evapotranspiration," Sustainability, MDPI, vol. 15(17), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
    2. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    3. Sandhu, Rupinder & Irmak, Suat, 2019. "Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed cond," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Nyathi, M.K. & van Halsema, G.E. & Annandale, J.G. & Struik, P.C., 2018. "Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 208(C), pages 107-119.
    6. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    7. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    8. Zhang, Junpeng & Li, Kejiang & Gao, Yang & Feng, Di & Zheng, Chunlian & Cao, Caiyun & Sun, Jingsheng & Dang, Hongkai & Hamani, Abdoul Kader Mounkaila, 2022. "Evaluation of saline water irrigation on cotton growth and yield using the AquaCrop crop simulation model," Agricultural Water Management, Elsevier, vol. 261(C).
    9. Yunfeng Li & Quanqing Feng & Dongwei Li & Mingfa Li & Huifeng Ning & Qisheng Han & Abdoul Kader Mounkaila Hamani & Yang Gao & Jingsheng Sun, 2022. "Water-Salt Thresholds of Cotton ( Gossypium hirsutum L.) under Film Drip Irrigation in Arid Saline-Alkali Area," Agriculture, MDPI, vol. 12(11), pages 1-21, October.
    10. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    11. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    12. Alex Zizinga & Jackson Gilbert Majaliwa Mwanjalolo & Britta Tietjen & Bobe Bedadi & Ramon Amaro de Sales & Dennis Beesigamukama, 2022. "Simulating Maize Productivity under Selected Climate Smart Agriculture Practices Using AquaCrop Model in a Sub-humid Environment," Sustainability, MDPI, vol. 14(4), pages 1-17, February.
    13. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    14. Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
    15. Fawen Li & Dong Yu & Yong Zhao, 2019. "Irrigation Scheduling Optimization for Cotton Based on the AquaCrop Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(1), pages 39-55, January.
    16. Adeboye, Omotayo B. & Schultz, Bart & Adekalu, Kenneth O. & Prasad, Krishna C., 2019. "Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria," Agricultural Water Management, Elsevier, vol. 213(C), pages 1130-1146.
    17. Pereira, Luis S. & Paredes, Paula & Rodrigues, Gonçalo C. & Neves, Manuela, 2015. "Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models," Agricultural Water Management, Elsevier, vol. 159(C), pages 239-254.
    18. Xu, Junzeng & Bai, Wenhuan & Li, Yawei & Wang, Haiyu & Yang, Shihong & Wei, Zheng, 2019. "Modeling rice development and field water balance using AquaCrop model under drying-wetting cycle condition in eastern China," Agricultural Water Management, Elsevier, vol. 213(C), pages 289-297.
    19. Mustafa, S.M.T. & Vanuytrecht, E. & Huysmans, M., 2017. "Combined deficit irrigation and soil fertility management on different soil textures to improve wheat yield in drought-prone Bangladesh," Agricultural Water Management, Elsevier, vol. 191(C), pages 124-137.
    20. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Tong, Ling & Ding, Risheng & Du, Taisheng & Li, Sien & Zhang, Xiaotao, 2017. "Performance of AquaCrop and SIMDualKc models in evapotranspiration partitioning on full and deficit irrigated maize for seed production under plastic film-mulch in an arid region of China," Agricultural Systems, Elsevier, vol. 151(C), pages 20-32.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:12:y:2022:i:2:p:242-:d:744594. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.