IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v488y2024ics0304380023003368.html
   My bibliography  Save this article

Calibration and validation of the AquaCrop model for production arrangements of forage cactus and grass in a semi-arid environment

Author

Listed:
  • Pinheiro, Antonio Gebson
  • Alves, Cleber Pereira
  • Souza, Carlos André Alves de
  • Araújo Júnior, George do Nascimento
  • Jardim, Alexandre Maniçoba da Rosa Ferraz
  • Morais, José Edson Florentino de
  • Souza, Luciana Sandra Bastos de
  • Lopes, Daniela de Carvalho
  • Steidle Neto, Antonio José
  • Montenegro, Abelardo Antonio de Assunção
  • Gomes, João Emanoel Ambrósio
  • Silva, Thieres George Freire da

Abstract

Understanding the best strategies for growing forage plants is important in balancing livestock production, as is the improvement of management techniques aimed at increasing food production. Models that simulate plant growth are therefore important tools for agricultural planning. The aim of this study was to calibrate and validate the AquaCrop model for agricultural systems of the forage cactus, millet and sorghum under different production arrangements. Twelve production units were cultivated from 2019 to 2020, using different cactus clones, and millet and sorghum cultivars, with variations in crop configuration, ground cover, water regime and crop density. Data on the crops (phenology, biometry and biomass throughout the cycle, and productivity at harvest), climate, irrigation, soil and management were observed. In all, data from six production units were used for calibration and six for validation. The performance of the model was evaluated using statistical indices. AquaCrop resulted in admissible errors in predicting the productivity of the crops under evaluation, showing good accuracy with a coefficient of determination greater than 0.80 and performance classified as ‘very good’ (confidence coefficient > 0.80). The Orelha de Elefante Mexicana clone showed the highest mean water productivity (39 g m−2). It was concluded that the model can be used to simulate crop productivity under different cropping arrangements in agricultural environments in the semi-arid region of Brazil with the aim of meeting the forage deficit of livestock in the region.

Suggested Citation

  • Pinheiro, Antonio Gebson & Alves, Cleber Pereira & Souza, Carlos André Alves de & Araújo Júnior, George do Nascimento & Jardim, Alexandre Maniçoba da Rosa Ferraz & Morais, José Edson Florentino de & S, 2024. "Calibration and validation of the AquaCrop model for production arrangements of forage cactus and grass in a semi-arid environment," Ecological Modelling, Elsevier, vol. 488(C).
  • Handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003368
    DOI: 10.1016/j.ecolmodel.2023.110606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023003368
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    2. Abedinpour, M. & Sarangi, A. & Rajput, T.B.S. & Singh, Man & Pathak, H. & Ahmad, T., 2012. "Performance evaluation of AquaCrop model for maize crop in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 55-66.
    3. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    4. Nunes, H.G.G.C. & Farias, V.D.S. & Sousa, D.P. & Costa, D.L.P. & Pinto, J.V.N. & Moura, V.B. & Teixeira, E.O. & Lima, M.J.A. & Ortega-Farias, S. & Souza, P.J.O.P., 2021. "Parameterization of the AquaCrop model for cowpea and assessing the impact of sowing dates normally used on yield," Agricultural Water Management, Elsevier, vol. 252(C).
    5. Martins, Minella A. & Tomasella, Javier & Rodriguez, Daniel A. & Alvalá, Regina C.S. & Giarolla, Angélica & Garofolo, Lucas L. & Júnior, José Lázaro Siqueira & Paolicchi, Luis T.L.C. & Pinto, Gustavo , 2018. "Improving drought management in the Brazilian semiarid through crop forecasting," Agricultural Systems, Elsevier, vol. 160(C), pages 21-30.
    6. Er-Raki, S. & Bouras, E. & Rodriguez, J.C. & Watts, C.J. & Lizarraga-Celaya, C. & Chehbouni, A., 2021. "Parameterization of the AquaCrop model for simulating table grapes growth and water productivity in an arid region of Mexico," Agricultural Water Management, Elsevier, vol. 245(C).
    7. Nyakudya, Innocent Wadzanayi & Stroosnijder, Leo, 2014. "Effect of rooting depth, plant density and planting date on maize (Zea mays L.) yield and water use efficiency in semi-arid Zimbabwe: Modelling with AquaCrop," Agricultural Water Management, Elsevier, vol. 146(C), pages 280-296.
    8. Araya, A. & Habtu, Solomon & Hadgu, Kiros Meles & Kebede, Afewerk & Dejene, Taddese, 2010. "Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare)," Agricultural Water Management, Elsevier, vol. 97(11), pages 1838-1846, November.
    9. Leonard M. Lauriault & Leah H. Schmitz & Shad H. Cox & Eric J. Scholljegerdes, 2021. "A Comparison of Pearl Millet and Sorghum–Sudangrass Pastures during the Frost-Prone Autumn for Growing Beef Cattle in Semiarid Region," Agriculture, MDPI, vol. 11(6), pages 1-8, June.
    10. Shirazi, Sana Zeeshan & Mei, Xurong & Liu, Buchun & Liu, Yuan, 2021. "Assessment of the AquaCrop Model under different irrigation scenarios in the North China Plain," Agricultural Water Management, Elsevier, vol. 257(C).
    11. Yang, J.M. & Yang, J.Y. & Liu, S. & Hoogenboom, G., 2014. "An evaluation of the statistical methods for testing the performance of crop models with observed data," Agricultural Systems, Elsevier, vol. 127(C), pages 81-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dhouib, M. & Zitouna-Chebbi, R. & Prévot, L. & Molénat, J. & Mekki, I. & Jacob, F., 2022. "Multicriteria evaluation of the AquaCrop crop model in a hilly rainfed Mediterranean agrosystem," Agricultural Water Management, Elsevier, vol. 273(C).
    2. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Sandhu, Rupinder & Irmak, Suat, 2019. "Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed cond," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    4. Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
    5. Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
    6. Sandhu, Rupinder & Irmak, Suat, 2019. "Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    7. Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
    8. Tinashe Lindel Dirwai & Aidan Senzanje & Tafadzwanashe Mabhaudhi, 2021. "Calibration and Evaluation of the FAO AquaCrop Model for Canola ( Brassica napus ) under Varied Moistube Irrigation Regimes," Agriculture, MDPI, vol. 11(5), pages 1-18, May.
    9. Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
    10. Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
    11. Iqbal, M. Anjum & Shen, Yanjun & Stricevic, Ruzica & Pei, Hongwei & Sun, Hongyoung & Amiri, Ebrahim & Penas, Angel & del Rio, Sara, 2014. "Evaluation of the FAO AquaCrop model for winter wheat on the North China Plain under deficit irrigation from field experiment to regional yield simulation," Agricultural Water Management, Elsevier, vol. 135(C), pages 61-72.
    12. López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
    13. Umesh, Barikara & Reddy, K.S. & Polisgowdar, B.S. & Maruthi, V. & Satishkumar, U. & Ayyanagoudar, M.S. & Rao, Sathyanarayan & Veeresh, H., 2022. "Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana," Agricultural Water Management, Elsevier, vol. 274(C).
    14. Razzaghi, Fatemeh & Zhou, Zhenjiang & Andersen, Mathias N. & Plauborg, Finn, 2017. "Simulation of potato yield in temperate condition by the AquaCrop model," Agricultural Water Management, Elsevier, vol. 191(C), pages 113-123.
    15. Toumi, J. & Er-Raki, S. & Ezzahar, J. & Khabba, S. & Jarlan, L. & Chehbouni, A., 2016. "Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management," Agricultural Water Management, Elsevier, vol. 163(C), pages 219-235.
    16. Wellens, Joost & Raes, Dirk & Traore, Farid & Denis, Antoine & Djaby, Bakary & Tychon, Bernard, 2013. "Performance assessment of the FAO AquaCrop model for irrigated cabbage on farmer plots in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 127(C), pages 40-47.
    17. Seyed Ahmadi & Elnaz Mosallaeepour & Ali Kamgar-Haghighi & Ali Sepaskhah, 2015. "Modeling Maize Yield and Soil Water Content with AquaCrop Under Full and Deficit Irrigation Managements," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2837-2853, June.
    18. Voloudakis, Dimitrios & Karamanos, Andreas & Economou, Garifalia & Kalivas, Dionissios & Vahamidis, Petros & Kotoulas, Vasilios & Kapsomenakis, John & Zerefos, Christos, 2015. "Prediction of climate change impacts on cotton yields in Greece under eight climatic models using the AquaCrop crop simulation model and discriminant function analysis," Agricultural Water Management, Elsevier, vol. 147(C), pages 116-128.
    19. Emmanuel Lekakis & Athanasios Zaikos & Alexios Polychronidis & Christos Efthimiou & Ioannis Pourikas & Theano Mamouka, 2022. "Evaluation of Different Modelling Techniques with Fusion of Satellite, Soil and Agro-Meteorological Data for the Assessment of Durum Wheat Yield under a Large Scale Application," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    20. Irmak, S. & Sandhu, R. & Kukal, M.S., 2022. "Multi-model projections of trade-offs between irrigated and rainfed maize yields under changing climate and future emission scenarios," Agricultural Water Management, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:488:y:2024:i:c:s0304380023003368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.