IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v297y2024ics0378377424001653.html
   My bibliography  Save this article

Optimizing drip irrigation managements to improve alfalfa seed yield in semiarid region

Author

Listed:
  • Jia, Zhicheng
  • Ou, Chengming
  • Sun, Shoujiang
  • Sun, Ming
  • Zhao, Yihong
  • Li, Changran
  • Zhao, Shiqiang
  • Wang, Juan
  • Jia, Shangang
  • Mao, Peisheng

Abstract

Alfalfa, a crucial forage crop, encounters substantial challenges in seed production in semi-arid regions due to drought and soil salinization. To address this challenge, a five-year field experiment was conducted in northwestern China to evaluate the effects of subsurface drip irrigation (SSDI) at different drip line depths and with different irrigation time treatments on alfalfa seed yield, yield components, irrigation water use efficiency (IWUE) and seed quality. The study indicated that SSDI at a depth of 10 cm resulted in a 48% increase in seed yield compared to surface drip irrigation and also obtained the highest IWUE with minimal soil disturbance. While irrigation during the branch, full bloom and pod set stages led to increasing for seed yield and IWUE, it was susceptible to climatic fluctuations during the growth period. Random forest modeling revealed that the timing and quantity of irrigation were key factors that determined yield components and seed yield. Climatic factors, specifically temperature and precipitation, played a significant role at each location. Irrigation time could have an effect on seed size, chlorophyll, and protein concentration analyzed by multispectral imaging. Linear discriminant analysis modeling indicated no significant difference in overall seed quality among the different irrigation time treatments, but prolonged seed maturation for the optimal irrigation time treatment. Therefore, installing the irrigation line at a depth of 10 cm and ensuring irrigation during the branching and full bloom stages were essential, while irrigation at the pod set stage was optional, for significantly improving the seed yield of alfalfa. RF model combined with the meteorology and irrigation management factors could determine key factors for the effect on seed yield. This research would provide valuable theoretical and practical insights for alfalfa seed production in semi-arid regions.

Suggested Citation

  • Jia, Zhicheng & Ou, Chengming & Sun, Shoujiang & Sun, Ming & Zhao, Yihong & Li, Changran & Zhao, Shiqiang & Wang, Juan & Jia, Shangang & Mao, Peisheng, 2024. "Optimizing drip irrigation managements to improve alfalfa seed yield in semiarid region," Agricultural Water Management, Elsevier, vol. 297(C).
  • Handle: RePEc:eee:agiwat:v:297:y:2024:i:c:s0378377424001653
    DOI: 10.1016/j.agwat.2024.108830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377424001653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2024.108830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:297:y:2024:i:c:s0378377424001653. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.