Assessment of climate change impact on maize (Zea mays L.) through aquacrop model in semi-arid alfisol of southern Telangana
Author
Abstract
Suggested Citation
DOI: 10.1016/j.agwat.2022.107950
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mahmood, A. & Oweis, T. & Ashraf, M. & Majid, A. & Aftab, M. & Aadal, N.K. & Ahmad, I., 2015. "Performance of improved practices in farmers’ fields under rainfed and supplemental irrigation systems in a semi-arid area of Pakistan," Agricultural Water Management, Elsevier, vol. 155(C), pages 1-10.
- Ahmadi, Mojgan & Etedali, Hadi Ramezani & Elbeltagi, Ahmed, 2021. "Evaluation of the effect of climate change on maize water footprint under RCPs scenarios in Qazvin plain, Iran," Agricultural Water Management, Elsevier, vol. 254(C).
- Abedinpour, M. & Sarangi, A. & Rajput, T.B.S. & Singh, Man & Pathak, H. & Ahmad, T., 2012. "Performance evaluation of AquaCrop model for maize crop in a semi-arid environment," Agricultural Water Management, Elsevier, vol. 110(C), pages 55-66.
- Xiao, Dengpan & Liu, De Li & Wang, Bin & Feng, Puyu & Bai, Huizi & Tang, Jianzhao, 2020. "Climate change impact on yields and water use of wheat and maize in the North China Plain under future climate change scenarios," Agricultural Water Management, Elsevier, vol. 238(C).
- Sandhu, Rupinder & Irmak, Suat, 2019. "Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed cond," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
- Santanu Kumar Bal & Malamal Alickal Sarath Chandran & Sandeep Vadakkemethel Madhavan & Abburi Venkata Maruthi Subba Rao & Narayanan Manikandan & Ramagiri Praveen Kumar & Pramod Valiyaparambil Paramesw, 2022. "Water Demand in Maize Is Projected to Decrease under Changing Climate in India," Sustainability, MDPI, vol. 14(3), pages 1-16, January.
- Feng, Dingrui & Li, Guangyong & Wang, Dan & Wulazibieke, Mierguli & Cai, Mingkun & Kang, Jing & Yuan, Zicheng & Xu, Houcheng, 2022. "Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China," Agricultural Water Management, Elsevier, vol. 261(C).
- Paoletti, J. Mitchell & Shortridge, Julie E., 2020. "Improved representation of uncertainty in farm-level financial cost-benefit analyses of supplemental irrigation in humid regions," Agricultural Water Management, Elsevier, vol. 239(C).
- Anshuman Gunawat & Devesh Sharma & Aditya Sharma & Swatantra Kumar Dubey, 2022. "Assessment of climate change impact and potential adaptation measures on wheat yield using the DSSAT model in the semi-arid environment," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2077-2096, March.
- Zhu, Xiufang & Xu, Kun & Liu, Ying & Guo, Rui & Chen, Lingyi, 2021. "Assessing the vulnerability and risk of maize to drought in China based on the AquaCrop model," Agricultural Systems, Elsevier, vol. 189(C).
- Li Fawen & Zhang Manjing & Liu Yaoze, 2022. "Quantitative research on drought loss sensitivity of summer maize based on AquaCrop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(2), pages 1065-1084, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhu, Hongyan & Zheng, Bingyan & Nie, Weibo & Fei, Liangjun & Shan, Yuyang & Li, Ge & Liang, Fei, 2024. "Optimization of maize irrigation strategy in Xinjiang, China by AquaCrop based on a four-year study," Agricultural Water Management, Elsevier, vol. 297(C).
- Ewa Panek-Chwastyk & Ceren Nisanur Ozbilge & Katarzyna Dąbrowska-Zielińska & Konrad Wróblewski, 2024. "Assessment of Grassland Biomass Prediction Using AquaCrop Model: Integrating Sentinel-2 Data and Ground Measurements in Wielkopolska and Podlasie Regions, Poland," Agriculture, MDPI, vol. 14(6), pages 1-16, May.
- Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
- Jesus Puma-Cahua & Germán Belizario & Wilber Laqui & Roberto Alfaro & Edilberto Huaquisto & Elmer Calizaya, 2023. "Evaluating the Yields of the Rainfed Potato Crop under Climate Change Scenarios Using the AquaCrop Model in the Peruvian Altiplano," Sustainability, MDPI, vol. 16(1), pages 1-16, December.
- Dahri, Shahzad Hussain & Shaikh, Irfan Ahmed & Talpur, Mashooque Ali & Mangrio, Munir Ahmed & Dahri, Zakir Hussain & Hoogenboom, Gerrit & Knox, Jerry W., 2024. "Modelling the impacts of climate change on the sustainability of rainfed and irrigated maize in Pakistan," Agricultural Water Management, Elsevier, vol. 296(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Minghui & Wang, Haidong & Fan, Junliang & Xiang, Youzhen & Liu, Xiaoqiang & Liao, Zhenqi & Abdelghany, Ahmed Elsayed & Zhang, Fucang & Li, Zhijun, 2022. "Evaluation of AquaCrop model for greenhouse cherry tomato with plastic film mulch under various water and nitrogen supplies," Agricultural Water Management, Elsevier, vol. 274(C).
- Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).
- Monteleone, Beatrice & Borzí, Iolanda & Arosio, Marcello & Cesarini, Luigi & Bonaccorso, Brunella & Martina, Mario, 2023. "Modelling the response of wheat yield to stage-specific water stress in the Po Plain," Agricultural Water Management, Elsevier, vol. 287(C).
- Irmak, S. & Sandhu, R. & Kukal, M.S., 2022. "Multi-model projections of trade-offs between irrigated and rainfed maize yields under changing climate and future emission scenarios," Agricultural Water Management, Elsevier, vol. 261(C).
- Beatrice Monteleone & Iolanda Borzí & Brunella Bonaccorso & Mario Martina, 2023. "Quantifying crop vulnerability to weather-related extreme events and climate change through vulnerability curves," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(3), pages 2761-2796, April.
- Pinheiro, Antonio Gebson & Alves, Cleber Pereira & Souza, Carlos André Alves de & Araújo Júnior, George do Nascimento & Jardim, Alexandre Maniçoba da Rosa Ferraz & Morais, José Edson Florentino de & S, 2024. "Calibration and validation of the AquaCrop model for production arrangements of forage cactus and grass in a semi-arid environment," Ecological Modelling, Elsevier, vol. 488(C).
- Islam, AFM Tariqul & Islam, AKM Saiful & Islam, GM Tarekul & Bala, Sujit Kumar & Salehin, Mashfiqus & Choudhury, Apurba Kanti & Dey, Nepal C. & Hossain, Akbar, 2022. "Adaptation strategies to increase water productivity of wheat under changing climate," Agricultural Water Management, Elsevier, vol. 264(C).
- Giorgio Baiamonte & Mario Minacapilli & Giuseppina Crescimanno, 2020. "Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil," Sustainability, MDPI, vol. 12(18), pages 1-19, September.
- Ran, Hui & Kang, Shaozhong & Li, Fusheng & Du, Taisheng & Tong, Ling & Li, Sien & Ding, Risheng & Zhang, Xiaotao, 2018. "Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China," Agricultural Water Management, Elsevier, vol. 203(C), pages 438-450.
- Kondwani Msowoya & Kaveh Madani & Rahman Davtalab & Ali Mirchi & Jay R. Lund, 2016. "Climate Change Impacts on Maize Production in the Warm Heart of Africa," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(14), pages 5299-5312, November.
- Samira Shayanmehr & Jana Ivanič Porhajašová & Mária Babošová & Mahmood Sabouhi Sabouni & Hosein Mohammadi & Shida Rastegari Henneberry & Naser Shahnoushi Foroushani, 2022. "The Impacts of Climate Change on Water Resources and Crop Production in an Arid Region," Agriculture, MDPI, vol. 12(7), pages 1-22, July.
- Tsakmakis, I.D. & Gikas, G.D. & Sylaios, G.K., 2021. "Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize," Agricultural Water Management, Elsevier, vol. 255(C).
- Na Li & Tangzhe Nie & Yi Tang & Dehao Lu & Tianyi Wang & Zhongxue Zhang & Peng Chen & Tiecheng Li & Linghui Meng & Yang Jiao & Kaiwen Cheng, 2022. "Responses of Soybean Water Supply and Requirement to Future Climate Conditions in Heilongjiang Province," Agriculture, MDPI, vol. 12(7), pages 1-21, July.
- Chen-Yang Shou & Ye Tian & Bin Zhou & Xu-Jin Fu & Yun-Ji Zhu & Fu-Jun Yue, 2022. "The Effect of Rainfall on Aquatic Nitrogen and Phosphorus in a Semi-Humid Area Catchment, Northern China," IJERPH, MDPI, vol. 19(17), pages 1-14, September.
- López-Urrea, R. & Domínguez, A. & Pardo, J.J. & Montoya, F. & García-Vila, M. & Martínez-Romero, A., 2020. "Parameterization and comparison of the AquaCrop and MOPECO models for a high-yielding barley cultivar under different irrigation levels," Agricultural Water Management, Elsevier, vol. 230(C).
- Bao, Xiaoyuan & Zhang, Baoyuan & Dai, Menglei & Liu, Xuejing & Ren, Jianhong & Gu, Limin & Zhen, Wenchao, 2024. "Improvement of grain weight and crop water productivity in winter wheat by light and frequent irrigation based on crop evapotranspiration," Agricultural Water Management, Elsevier, vol. 301(C).
- Ágota Horel & Tibor Zsigmond & Csilla Farkas & Györgyi Gelybó & Eszter Tóth & Anikó Kern & Zsófia Bakacsi, 2022. "Climate Change Alters Soil Water Dynamics under Different Land Use Types," Sustainability, MDPI, vol. 14(7), pages 1-17, March.
- Zhang, Ting & Zuo, Qiang & Ma, Ning & Shi, Jianchu & Fan, Yuchuan & Wu, Xun & Wang, Lichun & Xue, Xuzhang & Ben-Gal, Alon, 2023. "Optimizing relative root-zone water depletion thresholds to maximize yield and water productivity of winter wheat using AquaCrop," Agricultural Water Management, Elsevier, vol. 286(C).
- Nyathi, M.K. & van Halsema, G.E. & Annandale, J.G. & Struik, P.C., 2018. "Calibration and validation of the AquaCrop model for repeatedly harvested leafy vegetables grown under different irrigation regimes," Agricultural Water Management, Elsevier, vol. 208(C), pages 107-119.
- Jiayue Wang & Liangjie Xin & Xue Wang & Min Jiang, 2022. "The Impact of Climate Change and Grain Planting Structure Change on Irrigation Water Requirement for Main Grain Crops in Mainland China," Land, MDPI, vol. 11(12), pages 1-22, November.
More about this item
Keywords
Aquacrop; Climate change; Dryland agriculture; Maizecrop; Mulching and supplemental irrigation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:274:y:2022:i:c:s0378377422004978. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.