IDEAS home Printed from https://ideas.repec.org/r/dem/demres/v37y2017i17.html
   My bibliography  Save this item

Coherent forecasts of mortality with compositional data analysis

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Emanuele Aliverti & Stefano Mazzuco & Bruno Scarpa, 2022. "Dynamic modelling of mortality via mixtures of skewed distribution functions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1030-1048, July.
  2. Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup-Lamb & Jim Oeppen & Rune Lindahl-Jacobsen, 2019. "Forecasting Causes of Death using Compositional Data Analysis: the Case of Cancer Deaths," CREATES Research Papers 2019-07, Department of Economics and Business Economics, Aarhus University.
  3. Marie-Pier Bergeron-Boucher & James E. Oeppen & James W. Vaupel & Søren Kjærgaard, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
  4. Qian Lu & Katja Hanewald & Xiaojun Wang, 2021. "Subnational Mortality Modelling: A Bayesian Hierarchical Model with Common Factors," Risks, MDPI, vol. 9(11), pages 1-21, November.
  5. Bergeron-Boucher, Marie-Pier & Kjærgaard, Søren, 2022. "Mortality forecasts by age and cause of death: How to forecast both dimensions?," SocArXiv d7hbp_v1, Center for Open Science.
  6. I. A. Lakman & R. A. Askarov & V. B. Prudnikov & Z. F. Askarova & V. M. Timiryanova, 2021. "Predicting Mortality by Causes in the Republic of Bashkortostan Using the Lee–Carter Model," Studies on Russian Economic Development, Springer, vol. 32(5), pages 536-548, September.
  7. Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.
  8. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
  9. Rizzi, Silvia & Kjærgaard, Søren & Bergeron Boucher, Marie-Pier & Camarda, Carlo Giovanni & Lindahl-Jacobsen, Rune & Vaupel, James W., 2021. "Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 95-104.
  10. S⊘ren Kjærgaard & Yunus Emre Ergemen & Marie‐Pier Bergeron‐Boucher & Jim Oeppen & Malene Kallestrup‐Lamb, 2020. "Longevity forecasting by socio‐economic groups using compositional data analysis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 1167-1187, June.
  11. Nhan Huynh & Mike Ludkovski, 2021. "Joint Models for Cause-of-Death Mortality in Multiple Populations," Papers 2111.06631, arXiv.org.
  12. Graziani, Rebecca & NIGRI, ANDREA, 2023. "An Age–Period–Cohort Model in a Dirichlet Framework: A Coherent Causes of Death Estimation," SocArXiv 856yw_v1, Center for Open Science.
  13. Kenny Kam Kuen Mok & Jinhui Zhang & Yanlin Shi & Chong It Tan, 2024. "Mortality modelling with arrival of additional year of mortality data: Calibration and forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 50(28), pages 797-826.
  14. Graziani, Rebecca & NIGRI, ANDREA, 2023. "An Age–Period–Cohort Model in a Dirichlet Framework: A Coherent Causes of Death Estimation," SocArXiv 856yw, Center for Open Science.
  15. Bergeron-Boucher, Marie-Pier & Kjærgaard, Søren, 2022. "Mortality forecasts by age and cause of death: How to forecast both dimensions?," SocArXiv d7hbp, Center for Open Science.
  16. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d_v1, Center for Open Science.
  17. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
  18. Amos BATIONO & Leo ODONGO & Karim DERRA, 2020. "Compositional Data Analysis – Coherent Forecasting Mortality Model with Cohort Effect," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(1), pages 1-5.
  19. Lanfiuti Baldi, Giacomo & NIGRI, ANDREA, 2023. "An Age-Period-Cohort model for gender gap in youth mortality," OSF Preprints z3qmw_v1, Center for Open Science.
  20. Patrizio Vanella & Ugofilippo Basellini & Berit Lange, 2020. "Assessing Excess Mortality in Times of Pandemics Based on Principal Component Analysis of Weekly Mortality Data -- The Case of COVID-19," Working Papers axbhmxrs-o0viyh9z07m, French Institute for Demographic Studies.
  21. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
  22. Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k, Center for Open Science.
  23. Jarner, Søren F. & Jallbjørn, Snorre, 2020. "Pitfalls and merits of cointegration-based mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 80-93.
  24. Ugofilippo Basellini & Søren Kjærgaard & Carlo Giovanni Camarda, 2020. "An age-at-death distribution approach to forecast cohort mortality," Working Papers axafx5_3agsuwaphvlfk, French Institute for Demographic Studies.
  25. Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k_v1, Center for Open Science.
  26. Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
  27. Kokoszka, Piotr & Miao, Hong & Petersen, Alexander & Shang, Han Lin, 2019. "Forecasting of density functions with an application to cross-sectional and intraday returns," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1304-1317.
  28. Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.
  29. Basellini, Ugofilippo & Kjærgaard, Søren & Camarda, Carlo Giovanni, 2020. "An age-at-death distribution approach to forecast cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 129-143.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.